An efficient algorithm for the multivariable Adomian polynomials

In this article the sum of the series of multivariable Adomian polynomials is demonstrated to be identical to a rearrangement of the multivariable Taylor expansion of an analytic function of the decomposition series of solutions u 1, u 2, … , u m about the initial solution components u 1,0, u 2,0, …...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 217; číslo 6; s. 2456 - 2467
Hlavní autor: Duan, Jun-Sheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Inc 15.11.2010
Elsevier
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this article the sum of the series of multivariable Adomian polynomials is demonstrated to be identical to a rearrangement of the multivariable Taylor expansion of an analytic function of the decomposition series of solutions u 1, u 2, … , u m about the initial solution components u 1,0, u 2,0, … , u m,0 ; of course the multivariable Adomian polynomials were developed and are eminently practical for the solution of coupled nonlinear differential equations. The index matrices and their simplified forms of the multivariable Adomian polynomials are introduced. We obtain the recurrence relations for the simplified index matrices, which provide a convenient algorithm for rapid generation of the multivariable Adomian polynomials. Another alternative algorithm for term recurrence is established. In these algorithms recurrence processes do not require complicated operations such as parametrization, expanding and regrouping, derivatives, etc. as practiced in prior art. The MATHEMATICA program generating the Adomian polynomials based on the algorithm in this article is designed.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2010.07.046