An efficient algorithm for the multivariable Adomian polynomials

In this article the sum of the series of multivariable Adomian polynomials is demonstrated to be identical to a rearrangement of the multivariable Taylor expansion of an analytic function of the decomposition series of solutions u 1, u 2, … , u m about the initial solution components u 1,0, u 2,0, …...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation Jg. 217; H. 6; S. 2456 - 2467
1. Verfasser: Duan, Jun-Sheng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier Inc 15.11.2010
Elsevier
Schlagworte:
ISSN:0096-3003, 1873-5649
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article the sum of the series of multivariable Adomian polynomials is demonstrated to be identical to a rearrangement of the multivariable Taylor expansion of an analytic function of the decomposition series of solutions u 1, u 2, … , u m about the initial solution components u 1,0, u 2,0, … , u m,0 ; of course the multivariable Adomian polynomials were developed and are eminently practical for the solution of coupled nonlinear differential equations. The index matrices and their simplified forms of the multivariable Adomian polynomials are introduced. We obtain the recurrence relations for the simplified index matrices, which provide a convenient algorithm for rapid generation of the multivariable Adomian polynomials. Another alternative algorithm for term recurrence is established. In these algorithms recurrence processes do not require complicated operations such as parametrization, expanding and regrouping, derivatives, etc. as practiced in prior art. The MATHEMATICA program generating the Adomian polynomials based on the algorithm in this article is designed.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2010.07.046