Masked Autoencoders for Spatial-Temporal Relationship in Video-Based Group Activity Recognition

Group Activity Recognition (GAR) is a challenging problem involving several intricacies. The core of GAR lies in delving into spatiotemporal features to generate appropriate scene representations. Previous methods, however, either feature a complex framework requiring individual action labels or nee...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 12; pp. 132084 - 132095
Main Authors: Yadav, Rajeshwar, Halder, Raju, Banda, Gourinath
Format: Journal Article
Language:English
Published: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Group Activity Recognition (GAR) is a challenging problem involving several intricacies. The core of GAR lies in delving into spatiotemporal features to generate appropriate scene representations. Previous methods, however, either feature a complex framework requiring individual action labels or need more adequate modelling of spatial and temporal features. To address these concerns, we propose a masking strategy for learning task-specific GAR scene representations through reconstruction. Furthermore, we elucidate how this methodology can effectively capture task-specific spatiotemporal features. In particular, three notable findings emerge from our framework: 1) GAR is simplified, eliminating the need for individual action labels; 2) the generation of target-specific spatiotemporal features yields favourable outcomes for various datasets; and 3) this method demonstrates effectiveness even for datasets with a small number of videos, highlighting its capability with limited training data. Further, the existing GAR datasets have fewer videos per class and only a few actors are considered, restricting the existing model from being generalised effectively. To this aim, we introduce 923 videos for a crime activity named IITP Hostage, which contains two categories, hostage and non-hostage. To our knowledge, this is the first attempt to recognize crime-based activities in GAR. Our framework achieves MCA of 96.8%, 97.0%, 97.0% on Collective Activity Dataset (CAD), new CAD, extended CAD datasets and 84.3%, 95.6%, 96.78% for IITP Hostage, hostage+CAD and subset of UCF crime datasets. The hostage and non-hostage scenarios introduce additional complexity, making it more challenging for the model to accurately recognize the activities compared to hostage+CAD and other datasets. This observation underscores the necessity to delve deeper into the complexity of GAR activities.
AbstractList Group Activity Recognition (GAR) is a challenging problem involving several intricacies. The core of GAR lies in delving into spatiotemporal features to generate appropriate scene representations. Previous methods, however, either feature a complex framework requiring individual action labels or need more adequate modelling of spatial and temporal features. To address these concerns, we propose a masking strategy for learning task-specific GAR scene representations through reconstruction. Furthermore, we elucidate how this methodology can effectively capture task-specific spatiotemporal features. In particular, three notable findings emerge from our framework: 1) GAR is simplified, eliminating the need for individual action labels; 2) the generation of target-specific spatiotemporal features yields favourable outcomes for various datasets; and 3) this method demonstrates effectiveness even for datasets with a small number of videos, highlighting its capability with limited training data. Further, the existing GAR datasets have fewer videos per class and only a few actors are considered, restricting the existing model from being generalised effectively. To this aim, we introduce 923 videos for a crime activity named IITP Hostage, which contains two categories, hostage and non-hostage. To our knowledge, this is the first attempt to recognize crime-based activities in GAR. Our framework achieves MCA of 96.8%, 97.0%, 97.0% on Collective Activity Dataset (CAD), new CAD, extended CAD datasets and 84.3%, 95.6%, 96.78% for IITP Hostage, hostage+CAD and subset of UCF crime datasets. The hostage and non-hostage scenarios introduce additional complexity, making it more challenging for the model to accurately recognize the activities compared to hostage+CAD and other datasets. This observation underscores the necessity to delve deeper into the complexity of GAR activities.
Author Yadav, Rajeshwar
Halder, Raju
Banda, Gourinath
Author_xml – sequence: 1
  givenname: Rajeshwar
  orcidid: 0009-0000-6228-7340
  surname: Yadav
  fullname: Yadav, Rajeshwar
  email: rajeshwar_2021cs06@iitp.ac.in
  organization: Department of Computer Science and Engineering, Indian Institute of Technology Patna, Bihta, India
– sequence: 2
  givenname: Raju
  orcidid: 0000-0002-8873-8258
  surname: Halder
  fullname: Halder, Raju
  organization: Department of Computer Science and Engineering, Indian Institute of Technology Patna, Bihta, India
– sequence: 3
  givenname: Gourinath
  orcidid: 0000-0003-1447-4330
  surname: Banda
  fullname: Banda, Gourinath
  organization: Department of Computer Science and Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
BookMark eNpNkUtrGzEUhUVJoGmSX9AuBroeV6_RY-maNDGkFOIkW6GR7rhyx6OpNC7k30fOhGJtrjic812h8wmdDXEAhD4TvCAE62_L1epms1lQTPmC8UaW-QFdUCJ0zRomzk7uH9F1zjtcjipSIy-Q-WnzH_DV8jBFGFz0kHLVxVRtRjsF29ePsB9jsn31AH1R4pB_h7EKQ_UcPMT6u80lfZviYayWbgr_wvRSrC5uh3B0X6HzzvYZrt_nJXr6cfO4uqvvf92uV8v72rFGT3VLlefSU8J8K6RVpLUanBRCa-ct8FZ5hoEJzYE4qTx46hyhnDdaYkI9u0Trmeuj3Zkxhb1NLybaYN6EmLbGpim4HkzbKMuF4sLpYx6rAuWia3ErFe4oL6yvM2tM8e8B8mR28ZCG8nzDyodzpQUnxcVml0sx5wTd_60Em2MxZi7GHIsx78WU1Jc5FQDgJCEkbgr0FYQ8iww
CODEN IAECCG
Cites_doi 10.1109/CVPR.2016.516
10.1109/ICCV48922.2021.00738
10.1007/978-3-642-33765-9_16
10.1016/j.patcog.2021.108487
10.1109/ICCV.2015.510
10.48550/ARXIV.1706.03762
10.1109/TPAMI.2020.3034233
10.1109/CVPR42600.2020.00106
10.1109/ICCV48922.2021.00747
10.1016/j.neucom.2018.10.095
10.1007/978-3-319-10599-4_37
10.1109/ACCESS.2021.3059170
10.1109/TPAMI.2011.228
10.1109/TMM.2019.2930344
10.1109/TIP.2019.2918725
10.1109/CVPR52688.2022.01945
10.1109/IC4ME2.2018.8465583
10.1109/TCSVT.2023.3249906
10.1109/CVPR.2014.223
10.1007/978-3-030-69541-5_3
10.1109/TPAMI.2019.2928540
10.1155/2022/3454167
10.1109/IROS.2017.8206288
10.1007/978-3-030-58598-3_13
10.1145/3503161.3547825
10.1109/CVPR.2019.00033
10.1109/CVPR52688.2022.00320
10.1109/CVPR.2018.00678
10.1109/ICCV.2017.313
10.1109/CVPR.2019.00808
10.1145/3240508.3240576
10.1109/ACCESS.2022.3189162
10.1109/CVPR.2017.365
10.1109/TPAMI.2012.59
10.1109/CVPR.2016.217
10.1109/WACV.2018.00180
10.1109/CVPR.2017.783
10.1109/ICCV48922.2021.00676
10.1007/978-3-030-01219-9_44
10.1109/CVPR.2019.01020
10.48550/arXiv.2102.05095
10.1109/TIP.2019.2914577
10.1109/CVPR.2017.453
10.1109/CVPR52688.2022.00300
10.1109/TCSVT.2019.2894161
10.1109/CVPR42600.2020.00092
10.1109/TCSVT.2022.3233069
10.1109/CVPR52688.2022.01553
10.1109/ICETIETR.2018.8529108
10.1016/j.cviu.2021.103219
10.1109/ICCV48922.2021.01341
10.1609/aaai.v35i4.16437
10.1145/3240508.3240572
10.1007/978-3-030-58589-1_35
10.1109/CVPR.2015.7298875
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3457024
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 132095
ExternalDocumentID oai_doaj_org_article_b58a46846c944590894e46fb0b780f24
10_1109_ACCESS_2024_3457024
10670541
Genre orig-research
GrantInformation_xml – fundername: Science and Engineering Research Board, Department of Science and Technology, Government of India, through the IMPACTING RESEARCH INNOVATION AND TECHNOLOGY-2 Project,
  grantid: IMP/2018/000523
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-b28d47d213db67a81ba9ec76699cdae4b8d30e3694e1c78ded2cc1244597012d3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001320474900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:44 EDT 2025
Mon Jun 30 15:48:20 EDT 2025
Sat Nov 29 04:27:04 EST 2025
Wed Aug 27 01:59:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-b28d47d213db67a81ba9ec76699cdae4b8d30e3694e1c78ded2cc1244597012d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0000-6228-7340
0000-0002-8873-8258
0000-0003-1447-4330
OpenAccessLink https://ieeexplore.ieee.org/document/10670541
PQID 3109489641
PQPubID 4845423
PageCount 12
ParticipantIDs proquest_journals_3109489641
crossref_primary_10_1109_ACCESS_2024_3457024
doaj_primary_oai_doaj_org_article_b58a46846c944590894e46fb0b780f24
ieee_primary_10670541
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
Varshney (ref5) 2021
ref44
ref43
ref49
(ref59) 2024
ref8
ref7
ref9
ref4
ref3
ref6
Yi (ref21) 2021
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
Dosovitskiy (ref15) 2020
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref28
ref27
ref29
ref60
Tong (ref14); 35
References_xml – ident: ref42
  doi: 10.1109/CVPR.2016.516
– ident: ref33
  doi: 10.1109/ICCV48922.2021.00738
– ident: ref40
  doi: 10.1007/978-3-642-33765-9_16
– ident: ref19
  doi: 10.1016/j.patcog.2021.108487
– ident: ref9
  doi: 10.1109/ICCV.2015.510
– volume: 35
  start-page: 10078
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref14
  article-title: VideoMAE: Masked autoencoders are data-efficient learners for self-supervised video pre-training
– ident: ref17
  doi: 10.48550/ARXIV.1706.03762
– ident: ref32
  doi: 10.1109/TPAMI.2020.3034233
– ident: ref54
  doi: 10.1109/CVPR42600.2020.00106
– year: 2020
  ident: ref15
  article-title: An image is worth 16\times16 words: Transformers for image recognition at scale
  publication-title: arXiv:2010.11929
– ident: ref20
  doi: 10.1109/ICCV48922.2021.00747
– ident: ref11
  doi: 10.1016/j.neucom.2018.10.095
– ident: ref44
  doi: 10.1007/978-3-319-10599-4_37
– year: 2021
  ident: ref21
  article-title: ASFormer: Transformer for action segmentation
  publication-title: arXiv:2110.08568
– ident: ref4
  doi: 10.1109/ACCESS.2021.3059170
– ident: ref39
  doi: 10.1109/TPAMI.2011.228
– ident: ref52
  doi: 10.1109/TMM.2019.2930344
– ident: ref48
  doi: 10.1109/TIP.2019.2918725
– ident: ref25
  doi: 10.1109/CVPR52688.2022.01945
– ident: ref6
  doi: 10.1109/IC4ME2.2018.8465583
– ident: ref38
  doi: 10.1109/TCSVT.2023.3249906
– ident: ref7
  doi: 10.1109/CVPR.2014.223
– ident: ref23
  doi: 10.1007/978-3-030-69541-5_3
– ident: ref29
  doi: 10.1109/TPAMI.2019.2928540
– ident: ref60
  doi: 10.1155/2022/3454167
– ident: ref10
  doi: 10.1109/IROS.2017.8206288
– ident: ref56
  doi: 10.1007/978-3-030-58598-3_13
– ident: ref36
  doi: 10.1145/3503161.3547825
– ident: ref18
  doi: 10.1109/CVPR.2019.00033
– ident: ref16
  doi: 10.1109/CVPR52688.2022.00320
– ident: ref41
  doi: 10.1109/CVPR.2018.00678
– ident: ref46
  doi: 10.1109/ICCV.2017.313
– ident: ref53
  doi: 10.1109/CVPR.2019.00808
– ident: ref28
  doi: 10.1145/3240508.3240576
– ident: ref1
  doi: 10.1109/ACCESS.2022.3189162
– ident: ref49
  doi: 10.1109/CVPR.2017.365
– ident: ref8
  doi: 10.1109/TPAMI.2012.59
– ident: ref43
  doi: 10.1109/CVPR.2016.217
– ident: ref47
  doi: 10.1109/WACV.2018.00180
– ident: ref50
  doi: 10.1109/CVPR.2017.783
– ident: ref12
  doi: 10.1109/ICCV48922.2021.00676
– ident: ref51
  doi: 10.1007/978-3-030-01219-9_44
– ident: ref31
  doi: 10.1109/CVPR.2019.01020
– ident: ref13
  doi: 10.48550/arXiv.2102.05095
– ident: ref55
  doi: 10.1109/TIP.2019.2914577
– ident: ref26
  doi: 10.1109/CVPR.2017.453
– ident: ref37
  doi: 10.1109/CVPR52688.2022.00300
– ident: ref27
  doi: 10.1109/TCSVT.2019.2894161
– ident: ref58
  doi: 10.1109/CVPR42600.2020.00092
– ident: ref2
  doi: 10.1109/TCSVT.2022.3233069
– volume-title: A Deep Learning Based Approach to Detect Suspicious Weapons
  year: 2021
  ident: ref5
– ident: ref24
  doi: 10.1109/CVPR52688.2022.01553
– ident: ref3
  doi: 10.1109/ICETIETR.2018.8529108
– ident: ref22
  doi: 10.1016/j.cviu.2021.103219
– ident: ref35
  doi: 10.1109/ICCV48922.2021.01341
– ident: ref34
  doi: 10.1609/aaai.v35i4.16437
– ident: ref30
  doi: 10.1145/3240508.3240572
– ident: ref57
  doi: 10.1007/978-3-030-58589-1_35
– ident: ref45
  doi: 10.1109/CVPR.2015.7298875
– volume-title: Ultralytics YOLOv8
  year: 2024
  ident: ref59
SSID ssj0000816957
Score 2.306842
Snippet Group Activity Recognition (GAR) is a challenging problem involving several intricacies. The core of GAR lies in delving into spatiotemporal features to...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 132084
SubjectTerms Activity recognition
CAD
Cognitive tasks
Collaborative software
Complexity
Computer aided design
Crime
Datasets
Encoding
Feature recognition
Group activity recognition (GAR)
hostage crime
IITP hostage dataset
Image reconstruction
Labels
masked autoencoder
Predictive models
Representations
Solid modeling
spatial and temporal interaction
Spatiotemporal data
Spatiotemporal phenomena
Video
Videos
vision transformer
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFA1SXOhCfGK1ShYujc1kMnks22JxoUVExV3Iqzgo02Kr32-SmZYRF27cDgOZnJvJuTfcnAPABTGCaJJ5VAhsESUOI8kKirTxwmmmcZHucT_f8slEvLzI-5bVV-wJq-WBa-D6phCassCSVlIaDbol9ZRNDTZc4ClJSqCYy1YxlfZgkTFZ8EZmKMOyPxiNwoxCQUjoVU4Ljgn9QUVJsb-xWPm1LyeyGe-CnSZLhIP66_bAhq_2wXZLO_AAqDu9ePMODj6XsyhGGRuSYchAYTQZDosKPdaiU-9w3e_2Ws5hWcHn0vkZGgb6cjAdPcGBrT0k4MOqnWhWHYKn8fXj6AY1bgnI5oVcIkOEo9yRLHeGcR3SUS295YxJaZ321AiXY5-zgF9muXDeEWsju4eSIrCUy49Ap5pV_hhAFnIMrJnU1ghKcGGYzy0PvJVn3lJvu-ByBZya16IYKhUTWKoaZxVxVg3OXTCM4K5fjYrW6UGIs2rirP6KcxccxtC0xmM8pJtZF_RWsVLN77dQUe6UCslodvIfY5-CrTif-uSlBzrLj09_Bjbt17JcfJynlfcNAZ7Y6A
  priority: 102
  providerName: Directory of Open Access Journals
Title Masked Autoencoders for Spatial-Temporal Relationship in Video-Based Group Activity Recognition
URI https://ieeexplore.ieee.org/document/10670541
https://www.proquest.com/docview/3109489641
https://doaj.org/article/b58a46846c944590894e46fb0b780f24
Volume 12
WOSCitedRecordID wos001320474900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T-wwELYAUTwKrgdiueSCEoPjOD7KZQWiAIQQIDrLx6C3AiUrdpeS347tZFegJwqaKIpyTPzZmSMz3yB0xJxilhVAKkU94SxQokXFiXWgghWWVrmO-_FK3tyopyd92xWr51oYAMjJZ3CSdvO__ND4aQqVnSa6s2hiRGdnUUrRFmvNAyqpg4SuZMcsVFB92h8M4ktEH5Dxk5JXkjL-Tftkkv6uq8p_n-KsXy7WfinZOlrtDEncb5HfQAtQb6KVL_SCf5G5tuMXCLg_nTSJrzLlLONopOLUhzjOO3Lf8lK94nlK3L_hCA9r_DgM0JCzqOECztEp3Pdtmwl8N8s4auot9HBxfj-4JF1DBeLLSk-IYypwGVhRBiekjRar1eClEFr7YIE7FUoKpdAcCi9VgMC8TwZA9DqiIgvlNlqqmxp2EBbRDKFWaOud4oxWTkDpZVRtZQGeg--h49lAm1HLm2Gyv0G1aXExCRfT4dJDZwmM-amJ9DofiKNsujVkXKUsF9Fg8jqJRFWUk4tnR51U9DndZCsh8-V5LSg9tD_D1nQrdGwSIypXWvBi94fL9tCfJGIbb9lHS5O3KRygZf8-GY7fDrPzHrfXH-eHeSJ-Ahdn2ds
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYqWolyoC0FEQqtDxxr8Hr9PIaoCNQQVShF3Cw_BjUq2kUk4fdjezcRVdVDb6vVPsb-7J3HznyD0DHzmjlWARGaBsJZpMRIwYnzoKOTjopSx30zVpOJvr01P_pi9VILAwAl-QxO8mH5lx_bsMyhstNMd5ZMjOTsvBacM9qVa61DKrmHhBGq5xaqqDkdjkZpGMkLZPyk5kJRxv_QP4Wmv--r8tfHuGiY83f_Kdt7tN2bknjYYf8BvYJmB229IBj8iOyVm_-GiIfLRZsZK3PWMk5mKs6diNPKI9OOmeoer5Pifs0e8KzBN7MILTlLOi7iEp_Cw9A1msDXq5yjttlFP8-_TUcXpG-pQEItzIJ4piNXkVV19FK5ZLM6A0FJaUyIDrjXsaZQS8OhCkpHiCyEbAIkvyOpsljvoY2mbWAfYZkMEeqkccHrhIXwEuqgknKrKwgcwgB9XU20feiYM2zxOKixHS4242J7XAboLIOxvjTTXpcTaZZtv4usF9pxmUymYLJIVCc5ubzz1CtN7_JDdjMyL97XgTJAhytsbb9H5zZzonJtJK8O_nHbF7R5Mb0a2_Hl5Psn9DaL20VfDtHG4nEJR-hNeFrM5o-fy0J8Bk022vw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Masked+Autoencoders+for+Spatial-Temporal+Relationship+in+Video-Based+Group+Activity+Recognition&rft.jtitle=IEEE+access&rft.au=Yadav%2C+Rajeshwar&rft.au=Halder%2C+Raju&rft.au=Banda%2C+Gourinath&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=132084&rft.epage=132095&rft_id=info:doi/10.1109%2FACCESS.2024.3457024&rft.externalDocID=10670541
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon