Stability of Saddle Points Via Explicit Coderivatives of Pointwise Subdifferentials

We derive stability criteria for saddle points of a class of nonsmooth optimization problems in Hilbert spaces arising in PDE-constrained optimization, using metric regularity of infinite-dimensional set-valued mappings. A main ingredient is an explicit pointwise characterization of the regular code...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Set-valued and variational analysis Ročník 25; číslo 1; s. 69 - 112
Hlavní autoři: Clason, Christian, Valkonen, Tuomo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.03.2017
Springer Nature B.V
Témata:
ISSN:1877-0533, 1877-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We derive stability criteria for saddle points of a class of nonsmooth optimization problems in Hilbert spaces arising in PDE-constrained optimization, using metric regularity of infinite-dimensional set-valued mappings. A main ingredient is an explicit pointwise characterization of the regular coderivative of the subdifferential of convex integral functionals. This is applied to several stability properties for parameter identification problems for an elliptic partial differential equation with non-differentiable data fitting terms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1877-0533
1877-0541
DOI:10.1007/s11228-016-0366-7