Stability of Saddle Points Via Explicit Coderivatives of Pointwise Subdifferentials

We derive stability criteria for saddle points of a class of nonsmooth optimization problems in Hilbert spaces arising in PDE-constrained optimization, using metric regularity of infinite-dimensional set-valued mappings. A main ingredient is an explicit pointwise characterization of the regular code...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Set-valued and variational analysis Jg. 25; H. 1; S. 69 - 112
Hauptverfasser: Clason, Christian, Valkonen, Tuomo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.03.2017
Springer Nature B.V
Schlagworte:
ISSN:1877-0533, 1877-0541
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive stability criteria for saddle points of a class of nonsmooth optimization problems in Hilbert spaces arising in PDE-constrained optimization, using metric regularity of infinite-dimensional set-valued mappings. A main ingredient is an explicit pointwise characterization of the regular coderivative of the subdifferential of convex integral functionals. This is applied to several stability properties for parameter identification problems for an elliptic partial differential equation with non-differentiable data fitting terms.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1877-0533
1877-0541
DOI:10.1007/s11228-016-0366-7