A linear complexity algorithm for the automatic generation of convex multiple input multiple output instructions
The instruction-set extensions problem has been one of the major topics in recent years and it consists of the addition of a set of new complex instructions to a given instruction-set. This problem in its general formulation requires an exhaustive search of the design space to identify the candidate...
Uložené v:
| Vydané v: | International journal of electronics Ročník 95; číslo 7; s. 603 - 619 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Taylor & Francis
01.07.2008
|
| Predmet: | |
| ISSN: | 0020-7217, 1362-3060 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The instruction-set extensions problem has been one of the major topics in recent years and it consists of the addition of a set of new complex instructions to a given instruction-set. This problem in its general formulation requires an exhaustive search of the design space to identify the candidate instructions. This search turns into an exponential complexity of the solution. In this paper we propose an efficient linear complexity algorithm for the automatic generation of convex multiple input multiple output instructions, whose convexity is theoretically guaranteed. The proposed approach is not restricted to basic-block level and does not impose limitations either on the number of input and/or output, or on the number of new instructions generated. Our results show a significant overall application speedup (up to ×2.9 for ADPCM decoder) considering the linear complexity of the proposed solution and which therefore compares well with other state-of-art algorithms for automatic instruction-set extensions. |
|---|---|
| Bibliografia: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0020-7217 1362-3060 |
| DOI: | 10.1080/00207210801923620 |