Source Estimation Using Coprime Array: A Sparse Reconstruction Perspective

Direction-of-arrival (DOA), power, and achievable degrees-of-freedom (DOFs) are fundamental parameters for source estimation. In this paper, we propose a novel sparse reconstruction-based source estimation algorithm by using a coprime array. Specifically, a difference coarray is derived from a copri...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE sensors journal Ročník 17; číslo 3; s. 755 - 765
Hlavní autori: Zhiguo Shi, Chengwei Zhou, Yujie Gu, Goodman, Nathan A., Fengzhong Qu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.02.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1530-437X, 1558-1748
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Direction-of-arrival (DOA), power, and achievable degrees-of-freedom (DOFs) are fundamental parameters for source estimation. In this paper, we propose a novel sparse reconstruction-based source estimation algorithm by using a coprime array. Specifically, a difference coarray is derived from a coprime array as the foundation for increasing the number of DOFs, and a virtual uniform linear subarray covariance matrix sparse reconstruction-based optimization problem is formulated for DOA estimation. Meanwhile, a modified sliding window scheme is devised to remove the spurious peaks from the reconstructed sparse spatial spectrum, and the power estimation is enhanced through a least squares problem. Simulation results demonstrate the effectiveness of the proposed algorithm in terms of DOA estimation and power estimation as well as the achievable DOFs.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2016.2637059