A Machine Learning Approach for Energy-Efficient Intelligent Transportation Scheduling Problem in a Real-World Dynamic Circumstances

This paper provides a novel intelligent scheduling strategy for a real-world transportation dynamic scheduling case from an engine workshop of general motor company (GMEW), which is a key production line throughout the manufacturing process. In order to reduce the carbon emission in the scheduling p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems Jg. 24; H. 12; S. 15527 - 15539
Hauptverfasser: Mou, Jianhui, Gao, Kaizhou, Duan, Peiyong, Li, Junqing, Garg, Akhil, Sharma, Rohit
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1524-9050, 1558-0016
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!