A Machine Learning Approach for Energy-Efficient Intelligent Transportation Scheduling Problem in a Real-World Dynamic Circumstances
This paper provides a novel intelligent scheduling strategy for a real-world transportation dynamic scheduling case from an engine workshop of general motor company (GMEW), which is a key production line throughout the manufacturing process. In order to reduce the carbon emission in the scheduling p...
Uloženo v:
| Vydáno v: | IEEE transactions on intelligent transportation systems Ročník 24; číslo 12; s. 15527 - 15539 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1524-9050, 1558-0016 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!