Taskflow: A General-Purpose Parallel and Heterogeneous Task Programming System

Taskflow tackles the long-standing question: How can we make it easier for developers to program parallel and heterogeneous computer-aided design (CAD) applications with high performance and simultaneous high productivity? Taskflow introduces a new powerful task graph programming model to assist dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems Jg. 41; H. 5; S. 1448 - 1452
Hauptverfasser: Huang, Tsung-Wei, Lin, Dian-Lun, Lin, Yibo, Lin, Chun-Xun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0278-0070, 1937-4151
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Taskflow tackles the long-standing question: How can we make it easier for developers to program parallel and heterogeneous computer-aided design (CAD) applications with high performance and simultaneous high productivity? Taskflow introduces a new powerful task graph programming model to assist developers in the implementation of parallel and heterogeneous algorithms with complex control flow. We develop an efficient system runtime to solve many of the new scheduling challenges arising out of our models and optimize the performance across latency, energy efficiency, and throughput. Taskflow has demonstrated promising performance on both micro-benchmarks and real-world applications. As an example, Taskflow solved a large-scale circuit placement problem up to 17% faster, with <inline-formula> <tex-math notation="LaTeX">1.3\times </tex-math></inline-formula> fewer memory, <inline-formula> <tex-math notation="LaTeX">2.1\times </tex-math></inline-formula> less power consumption, and <inline-formula> <tex-math notation="LaTeX">2.9\times </tex-math></inline-formula> higher throughput than two industrial-strength systems, oneTBB and StarPU, on a machine of 40 CPUs and 4 GPUs.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0278-0070
1937-4151
DOI:10.1109/TCAD.2021.3082507