An Efficient Modified Particle Swarm Optimization Algorithm for Solving Mixed-Integer Nonlinear Programming Problems

This paper presents an efficient modified particle swarm optimization (EMPSO) algorithm for solving mixed-integer nonlinear programming problems. In the proposed algorithm, a new evolutionary strategies for the discrete variables is introduced, which can solve the problem that the evolutionary strat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of computational intelligence systems Ročník 12; číslo 2; s. 530 - 543
Hlavní autori: Sun, Ying, Gao, Yuelin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.01.2019
Springer Nature B.V
Springer
Predmet:
ISSN:1875-6891, 1875-6883, 1875-6883
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper presents an efficient modified particle swarm optimization (EMPSO) algorithm for solving mixed-integer nonlinear programming problems. In the proposed algorithm, a new evolutionary strategies for the discrete variables is introduced, which can solve the problem that the evolutionary strategy of the classical particle swarm optimization algorithm is invalid for the discrete variables. An update strategy under the constraints is proposed to update the optimal position, which effectively utilizes the available information on infeasible solutions to guide particle search. In order to evaluate and analyze the performance of EMPSO, two hybrid particle swarm optimization algorithms with different strategies are also given. The simulation results indicate that, in terms of robustness and convergence speed, EMPSO is better than the other algorithms in solving 14 test problems. A new performance index (NPI) is introduced to fairly compare the other two algorithms, and in most cases the values of the NPI obtained by EMPSO were superior to the other algorithms.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1875-6891
1875-6883
1875-6883
DOI:10.2991/ijcis.d.190402.001