XNOR-SRAM: In-Memory Computing SRAM Macro for Binary/Ternary Deep Neural Networks
We present XNOR-SRAM, a mixed-signal in-memory computing (IMC) SRAM macro that computes ternary-XNOR-and-accumulate (XAC) operations in binary/ternary deep neural networks (DNNs) without row-by-row data access. The XNOR-SRAM bitcell embeds circuits for ternary XNOR operations, which are accumulated...
Saved in:
| Published in: | IEEE journal of solid-state circuits Vol. 55; no. 6; pp. 1733 - 1743 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9200, 1558-173X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We present XNOR-SRAM, a mixed-signal in-memory computing (IMC) SRAM macro that computes ternary-XNOR-and-accumulate (XAC) operations in binary/ternary deep neural networks (DNNs) without row-by-row data access. The XNOR-SRAM bitcell embeds circuits for ternary XNOR operations, which are accumulated on the read bitline (RBL) by simultaneously turning on all 256 rows, essentially forming a resistive voltage divider. The analog RBL voltage is digitized with a column-multiplexed 11-level flash analog-to-digital converter (ADC) at the XNOR-SRAM periphery. XNOR-SRAM is prototyped in a 65-nm CMOS and achieves the energy efficiency of 403 TOPS/W for ternary-XAC operations with 88.8% test accuracy for the CIFAR-10 data set at 0.6-V supply. This marks <inline-formula> <tex-math notation="LaTeX">33\times </tex-math></inline-formula> better energy efficiency and <inline-formula> <tex-math notation="LaTeX">300\times </tex-math></inline-formula> better energy-delay product than conventional digital hardware and also represents among the best tradeoff in energy efficiency and DNN accuracy. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9200 1558-173X |
| DOI: | 10.1109/JSSC.2019.2963616 |