Open-circuit fault diagnosis of power rectifier using sparse autoencoder based deep neural network
This paper is concerned with the open-circuit fault diagnosis of phase-controlled three-phase full-bridge rectifier by using a sparse autoencoder-based deep neural network (SAE-based DNN). Firstly, some preliminaries on SAE-based DNN are briefly introduced to automatically learn the representative f...
Uložené v:
| Vydané v: | Neurocomputing (Amsterdam) Ročník 311; s. 1 - 10 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
15.10.2018
|
| Predmet: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper is concerned with the open-circuit fault diagnosis of phase-controlled three-phase full-bridge rectifier by using a sparse autoencoder-based deep neural network (SAE-based DNN). Firstly, some preliminaries on SAE-based DNN are briefly introduced to automatically learn the representative fault features from the raw fault signals. Then, a novel strategy is developed to design the structure of the SAE-based DNN, by which the depth and hidden neurons of the SAE-based DNN could be regularly determined to extract the features of input signals. Furthermore, the fault model and system framework are presented to diagnose the open-circuit fault of the three-phase full-bridge rectifier. Finally, the effectiveness of the developed novel strategy is verified by the results of simulation experiments, and the superiority of the novel SAE-based DNN is evaluated by comparing with other frequently used approaches. |
|---|---|
| ISSN: | 0925-2312 1872-8286 |
| DOI: | 10.1016/j.neucom.2018.05.040 |