Studying cancer-cell populations by programmable models of networks

We draw the basic lines for an approach to build mathematical and programmable network models, to be applied in the study of populations of cancer-cells at different stages of disease development. The methodology we propose uses a stochastic Concurrent Constraint Programming language, a flexible sto...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Network modeling and analysis in health informatics and bioinformatics (Wien) Ročník 1; číslo 3; s. 117 - 133
Hlavní autoři: Bortolussi, Luca, Policriti, Alberto
Médium: Journal Article
Jazyk:angličtina
Vydáno: Vienna Springer Vienna 01.09.2012
Springer Nature B.V
Témata:
ISSN:2192-6662, 2192-6670
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We draw the basic lines for an approach to build mathematical and programmable network models, to be applied in the study of populations of cancer-cells at different stages of disease development. The methodology we propose uses a stochastic Concurrent Constraint Programming language, a flexible stochastic modelling language employed to code networks of agents. It is applied to (and partially motivated by) the study of differently characterized populations of prostate cancer cells. In particular, we prove how our method is suitable to systematically reconstruct and compare different mathematical models of prostate cancer growth—together with interactions with different kinds of hormone therapy—at different levels of refinement. Moreover, we show our technique at work in analysing the nature of noise and in the possible presence of competing mechanisms in the models proposed.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2192-6662
2192-6670
DOI:10.1007/s13721-012-0010-x