Studying cancer-cell populations by programmable models of networks
We draw the basic lines for an approach to build mathematical and programmable network models, to be applied in the study of populations of cancer-cells at different stages of disease development. The methodology we propose uses a stochastic Concurrent Constraint Programming language, a flexible sto...
Uložené v:
| Vydané v: | Network modeling and analysis in health informatics and bioinformatics (Wien) Ročník 1; číslo 3; s. 117 - 133 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Vienna
Springer Vienna
01.09.2012
Springer Nature B.V |
| Predmet: | |
| ISSN: | 2192-6662, 2192-6670 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We draw the basic lines for an approach to build mathematical and
programmable
network models, to be applied in the study of populations of cancer-cells at different stages of disease development. The methodology we propose uses a stochastic Concurrent Constraint Programming language, a flexible stochastic modelling language employed to code networks of agents. It is applied to (and partially motivated by) the study of differently characterized populations of prostate cancer cells. In particular, we prove how our method is suitable to systematically reconstruct and compare different mathematical models of prostate cancer growth—together with interactions with different kinds of hormone therapy—at different levels of refinement. Moreover, we show our technique at work in analysing the nature of noise and in the possible presence of competing mechanisms in the models proposed. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2192-6662 2192-6670 |
| DOI: | 10.1007/s13721-012-0010-x |