Research on an Improved Adaptive Fitting Algorithm of Trajectory Information

In order to facilitate the storage, visualization and data mining of large-scale trajectory information, an improved adaptive fitting algorithm of trajectory information is proposed, which can automatically select the optimal fitting interval and generate the key points and coefficients of the fitte...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of physics. Conference series Ročník 1169; číslo 1; s. 12020 - 12025
Hlavní autoři: Futai, LIANG, Hongquan, LI, Mao, ZHENG, Lingzhi, LI
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bristol IOP Publishing 01.02.2019
Témata:
ISSN:1742-6588, 1742-6596
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In order to facilitate the storage, visualization and data mining of large-scale trajectory information, an improved adaptive fitting algorithm of trajectory information is proposed, which can automatically select the optimal fitting interval and generate the key points and coefficients of the fitted interval. The algorithm consists of two steps: Firstly, the adaptive fitting method is used to fit the trajectory points to obtain the most suitable fitted trajectory interval, and the fitting method adopts the least squares method. Secondly, the constrained quadratic programming method is used to optimize the obtained trajectory interval coefficients to make the fitting curve smooth and continuous. The experimental simulation proves that the algorithm has obvious effects on data compression and feature extraction of trajectory information.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1169/1/012020