A Novel Approximation Algorithm for the Shortest Vector Problem
Finding the shortest vector in a lattice is a NP-hard problem. The best known approximation algorithm for this problem is LLL algorithm with the approximation factor of <inline-formula> <tex-math notation="LaTeX">\alpha ^{\frac {n-1}{2}} </tex-math></inline-formula>...
Uložené v:
| Vydané v: | IEEE access Ročník 12; s. 141026 - 141031 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Finding the shortest vector in a lattice is a NP-hard problem. The best known approximation algorithm for this problem is LLL algorithm with the approximation factor of <inline-formula> <tex-math notation="LaTeX">\alpha ^{\frac {n-1}{2}} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\alpha \geq \frac {4}{3} </tex-math></inline-formula>, which is not a good approximation factor. This work proposes a new polynomial time approximation algorithm for the shortest lattice vector problem. The proposed method makes use of only integer arithmetic and does not require Gram-Schmidt orthogonal basis for generating reduced basis. The proposed method is able to obtain an approximation factor of <inline-formula> <tex-math notation="LaTeX">\frac {1}{(1-\delta)} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">0 \leq \delta \lt 1 </tex-math></inline-formula>. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2024.3469368 |