Study of a Numerical Integral Interpolation Method for Electromagnetic Transient Simulations

In the fixed time-step electromagnetic transient (EMT)-type program, an interpolation process is applied to deal with switching events. The interpolation method frequently reduces the algorithm’s accuracy when dealing with power electronics. In this study, we use the Butcher tableau to analyze the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) Jg. 17; H. 15; S. 3837
Hauptverfasser: Sun, Kaiyuan, Chen, Kun, Cen, Haifeng, Tan, Fucheng, Ye, Xiaohui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.08.2024
Schlagworte:
ISSN:1996-1073, 1996-1073
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the fixed time-step electromagnetic transient (EMT)-type program, an interpolation process is applied to deal with switching events. The interpolation method frequently reduces the algorithm’s accuracy when dealing with power electronics. In this study, we use the Butcher tableau to analyze the defects of linear interpolation. Then, based on the theories of Runge–Kutta integration, we propose two three-stage diagonally implicit Runge–Kutta (3S-DIRK) algorithms combined with the trapezoidal rule (TR) and backward Euler (BE), respectively, with TR-3S-DIRK and BE2-3S-DIRK for the interpolation and synchronization processes. The proposed numerical integral interpolation scheme has second-order accuracy and does not produce spurious oscillations due to the size change in the time step. The proposed method is compared with the critical damping adjustment method (CDA) and the trapezoidal method, showing that it does not produce spurious numerical oscillations or first-order errors.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1996-1073
1996-1073
DOI:10.3390/en17153837