Estimating Driver's Lane-Change Intent Considering Driving Style and Contextual Traffic
Estimating a driver's lane-change (LC) intent is very important so as to avoid traffic accidents caused by improper LC maneuvers. This paper proposes a lane-change Bayesian network (LCBN) incorporated with a Gaussian mixture model (GMM), termed as LCBN-GMM, to estimate a driver's LC intent...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on intelligent transportation systems Jg. 20; H. 9; S. 3258 - 3271 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1524-9050, 1558-0016 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Estimating a driver's lane-change (LC) intent is very important so as to avoid traffic accidents caused by improper LC maneuvers. This paper proposes a lane-change Bayesian network (LCBN) incorporated with a Gaussian mixture model (GMM), termed as LCBN-GMM, to estimate a driver's LC intent considering a driver's driving style over varying scenarios. According to the scores made by participates with a behavioral-psychological questionnaire, three driving styles are classified. In order to get more effective labeled LC and lane-keep (LK) data for model training, we propose a gaze-based labeling (GBL) method by monitoring a drivers's gaze behavior, instead of using a time-window labeling method. The capability of LCBN-GMM to estimate a driver's lane-change intent is evaluated in different LC scenarios and driving styles, in comparison to support vector machine and Naive Bayes. Data are collected in a seat-box-based driving simulator where 32 drivers, consisting of 9 aggressive, 15 neutral, and 8 conservative drivers, participated. Experimental results demonstrate that the LCBN-GMM with GBL achieves the best performance, estimating a driver's LC intent an average of 4.5 s ahead of actual LC maneuvers with 78.2% accuracy considering both driving style and contextual traffic, compared with other approaches. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1524-9050 1558-0016 |
| DOI: | 10.1109/TITS.2018.2873595 |