Empirical hardness of finding optimal Bayesian network structures: algorithm selection and runtime prediction
Various algorithms have been proposed for finding a Bayesian network structure that is guaranteed to maximize a given scoring function. Implementations of state-of-the-art algorithms, solvers , for this Bayesian network structure learning problem rely on adaptive search strategies, such as branch-an...
Uložené v:
| Vydané v: | Machine learning Ročník 107; číslo 1; s. 247 - 283 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.01.2018
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0885-6125, 1573-0565 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Various algorithms have been proposed for finding a Bayesian network structure that is guaranteed to maximize a given scoring function. Implementations of state-of-the-art algorithms,
solvers
, for this Bayesian network structure learning problem rely on adaptive search strategies, such as branch-and-bound and integer linear programming techniques. Thus, the time requirements of the solvers are not well characterized by simple functions of the instance size. Furthermore, no single solver dominates the others in speed. Given a problem instance, it is thus a priori unclear which solver will perform best and how fast it will solve the instance. We show that for a given solver the hardness of a problem instance can be efficiently predicted based on a collection of non-trivial features which go beyond the basic parameters of instance size. Specifically, we train and test statistical models on empirical data, based on the largest evaluation of state-of-the-art exact solvers to date. We demonstrate that we can predict the runtimes to a reasonable degree of accuracy. These predictions enable effective selection of solvers that perform well in terms of runtimes on a particular instance. Thus, this work contributes a highly efficient portfolio solver that makes use of several individual solvers. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0885-6125 1573-0565 |
| DOI: | 10.1007/s10994-017-5680-2 |