Integrating Hyperspectral, Thermal, and Ground Data with Machine Learning Algorithms Enhances the Prediction of Grapevine Yield and Berry Composition

Accurately predicting grapevine yield and quality is critical for optimising vineyard management and ensuring economic viability. Numerous studies have reported the complexity in modelling grapevine yield and quality due to variability in the canopy structure, challenges in incorporating soil and mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Jg. 16; H. 23; S. 4539
Hauptverfasser: Jewan, Shaikh, Gautam, Deepak, Sparkes, Debbie, Singh, Ajit, Billa, Lawal, Cogato, Alessia, Murchie, Erik, Pagay, Vinay
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.12.2024
Schlagworte:
ISSN:2072-4292, 2072-4292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!