Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms

Using ideas and results from polynomial time approximation and exact computation we design approximation algorithms for several NP-hard combinatorial problems achieving ratios that cannot be achieved in polynomial time (unless a very unlikely complexity conjecture is confirmed) with worst-case compl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics Jg. 159; H. 17; S. 1954 - 1970
Hauptverfasser: Bourgeois, Nicolas, Escoffier, Bruno, Paschos, Vangelis Th
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier B.V 28.10.2011
Elsevier
Schlagworte:
ISSN:0166-218X, 1872-6771
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using ideas and results from polynomial time approximation and exact computation we design approximation algorithms for several NP-hard combinatorial problems achieving ratios that cannot be achieved in polynomial time (unless a very unlikely complexity conjecture is confirmed) with worst-case complexity much lower (though super-polynomial) than that of an exact computation. We study in particular two paradigmatic problems, max independent set and min vertex cover. ► We propose exponential time approximation algorithms for solving NP-hard problems. ► This approach is considered for Max Independent Set and Min Vertex Cover. ► We achieve interesting tradeoffs between running times and approximation ratios. ► Used techniques are splitting of the instance, parameterized algorithms, randomization.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2011.07.009