Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms
Using ideas and results from polynomial time approximation and exact computation we design approximation algorithms for several NP-hard combinatorial problems achieving ratios that cannot be achieved in polynomial time (unless a very unlikely complexity conjecture is confirmed) with worst-case compl...
Uloženo v:
| Vydáno v: | Discrete Applied Mathematics Ročník 159; číslo 17; s. 1954 - 1970 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Kidlington
Elsevier B.V
28.10.2011
Elsevier |
| Témata: | |
| ISSN: | 0166-218X, 1872-6771 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Using ideas and results from polynomial time approximation and exact computation we design approximation algorithms for several
NP-hard combinatorial problems achieving ratios that cannot be achieved in polynomial time (unless a very unlikely complexity conjecture is confirmed) with worst-case complexity much lower (though super-polynomial) than that of an exact computation. We study in particular two paradigmatic problems,
max independent set and
min vertex cover.
► We propose exponential time approximation algorithms for solving NP-hard problems. ► This approach is considered for Max Independent Set and Min Vertex Cover. ► We achieve interesting tradeoffs between running times and approximation ratios. ► Used techniques are splitting of the instance, parameterized algorithms, randomization. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0166-218X 1872-6771 |
| DOI: | 10.1016/j.dam.2011.07.009 |