A new norm-relaxed SQP algorithm with global convergence

A new norm-relaxed sequential quadratic programming algorithm with global convergence for inequality constrained problem is presented in this paper, and the quadratic programming subproblem can be solved at each iteration. Without the boundedness assumptions on any of the iterative sequences, the gl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics letters Ročník 23; číslo 6; s. 670 - 675
Hlavní autoři: Zheng, Hai-Yan, Jian, Jin-Bao, Tang, Chun-Ming, Quan, Ran
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.06.2010
Elsevier
Témata:
ISSN:0893-9659, 1873-5452
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A new norm-relaxed sequential quadratic programming algorithm with global convergence for inequality constrained problem is presented in this paper, and the quadratic programming subproblem can be solved at each iteration. Without the boundedness assumptions on any of the iterative sequences, the global convergence can be guaranteed by line search with l ∞ penalty function and under some mild assumptions.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0893-9659
1873-5452
DOI:10.1016/j.aml.2010.02.005