Convergence in Positive Time for a Finite Difference Method Applied to a Fractional Convection-Diffusion Problem

A standard finite difference method on a uniform mesh is used to solve a time-fractional convection-diffusion initial-boundary value problem. Such problems typically exhibit a mild singularity at the initial time . It is proved that the rate of convergence of the maximum nodal error on any subdomain...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational methods in applied mathematics Ročník 18; číslo 1; s. 33 - 42
Hlavní autori: Gracia, José Luis, O’Riordan, Eugene, Stynes, Martin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Minsk De Gruyter 01.01.2018
Walter de Gruyter GmbH
Predmet:
ISSN:1609-4840, 1609-9389
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A standard finite difference method on a uniform mesh is used to solve a time-fractional convection-diffusion initial-boundary value problem. Such problems typically exhibit a mild singularity at the initial time . It is proved that the rate of convergence of the maximum nodal error on any subdomain that is bounded away from is higher than the rate obtained when the maximum nodal error is measured over the entire space-time domain. Numerical results are provided to illustrate the theoretical error bounds.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1609-4840
1609-9389
DOI:10.1515/cmam-2017-0019