Convergence in Positive Time for a Finite Difference Method Applied to a Fractional Convection-Diffusion Problem

A standard finite difference method on a uniform mesh is used to solve a time-fractional convection-diffusion initial-boundary value problem. Such problems typically exhibit a mild singularity at the initial time . It is proved that the rate of convergence of the maximum nodal error on any subdomain...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational methods in applied mathematics Ročník 18; číslo 1; s. 33 - 42
Hlavní autoři: Gracia, José Luis, O’Riordan, Eugene, Stynes, Martin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Minsk De Gruyter 01.01.2018
Walter de Gruyter GmbH
Témata:
ISSN:1609-4840, 1609-9389
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A standard finite difference method on a uniform mesh is used to solve a time-fractional convection-diffusion initial-boundary value problem. Such problems typically exhibit a mild singularity at the initial time . It is proved that the rate of convergence of the maximum nodal error on any subdomain that is bounded away from is higher than the rate obtained when the maximum nodal error is measured over the entire space-time domain. Numerical results are provided to illustrate the theoretical error bounds.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1609-4840
1609-9389
DOI:10.1515/cmam-2017-0019