Convergence in Positive Time for a Finite Difference Method Applied to a Fractional Convection-Diffusion Problem
A standard finite difference method on a uniform mesh is used to solve a time-fractional convection-diffusion initial-boundary value problem. Such problems typically exhibit a mild singularity at the initial time . It is proved that the rate of convergence of the maximum nodal error on any subdomain...
Uloženo v:
| Vydáno v: | Journal of computational methods in applied mathematics Ročník 18; číslo 1; s. 33 - 42 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Minsk
De Gruyter
01.01.2018
Walter de Gruyter GmbH |
| Témata: | |
| ISSN: | 1609-4840, 1609-9389 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A standard finite difference method on a uniform mesh is used to solve a time-fractional convection-diffusion initial-boundary value problem. Such problems typically exhibit a mild singularity at the initial time
. It is proved that the rate of convergence of the maximum nodal error on any subdomain that is bounded away from
is higher than the rate obtained when the maximum nodal error is measured over the entire space-time domain. Numerical results are provided to illustrate the theoretical error bounds. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1609-4840 1609-9389 |
| DOI: | 10.1515/cmam-2017-0019 |