Convergence in Positive Time for a Finite Difference Method Applied to a Fractional Convection-Diffusion Problem
A standard finite difference method on a uniform mesh is used to solve a time-fractional convection-diffusion initial-boundary value problem. Such problems typically exhibit a mild singularity at the initial time . It is proved that the rate of convergence of the maximum nodal error on any subdomain...
Saved in:
| Published in: | Journal of computational methods in applied mathematics Vol. 18; no. 1; pp. 33 - 42 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Minsk
De Gruyter
01.01.2018
Walter de Gruyter GmbH |
| Subjects: | |
| ISSN: | 1609-4840, 1609-9389 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A standard finite difference method on a uniform mesh is used to solve a time-fractional convection-diffusion initial-boundary value problem. Such problems typically exhibit a mild singularity at the initial time
. It is proved that the rate of convergence of the maximum nodal error on any subdomain that is bounded away from
is higher than the rate obtained when the maximum nodal error is measured over the entire space-time domain. Numerical results are provided to illustrate the theoretical error bounds. |
|---|---|
| AbstractList | A standard finite difference method on a uniform mesh is used to solve a time-fractional convection-diffusion initial-boundary value problem. Such problems typically exhibit a mild singularity at the initial time
t
=
0
{t=0}
. It is proved that the rate of convergence of the maximum nodal error on any subdomain that is bounded away from
t
=
0
{t=0}
is higher than the rate obtained when the maximum nodal error is measured over the entire space-time domain. Numerical results are provided to illustrate the theoretical error bounds. A standard finite difference method on a uniform mesh is used to solve a time-fractional convection-diffusion initial-boundary value problem. Such problems typically exhibit a mild singularity at the initial time . It is proved that the rate of convergence of the maximum nodal error on any subdomain that is bounded away from is higher than the rate obtained when the maximum nodal error is measured over the entire space-time domain. Numerical results are provided to illustrate the theoretical error bounds. A standard finite difference method on a uniform mesh is used to solve a time-fractional convection-diffusion initial-boundary value problem. Such problems typically exhibit a mild singularity at the initial time [Image omitted]. It is proved that the rate of convergence of the maximum nodal error on any subdomain that is bounded away from [Image omitted] is higher than the rate obtained when the maximum nodal error is measured over the entire space-time domain. Numerical results are provided to illustrate the theoretical error bounds. |
| Author | Gracia, José Luis Stynes, Martin O’Riordan, Eugene |
| Author_xml | – sequence: 1 givenname: José Luis orcidid: 0000-0003-2538-9027 surname: Gracia fullname: Gracia, José Luis email: jlgracia@unizar.es organization: Department of Applied Mathematics, University of Zaragoza, 0018Zaragoza, Spain – sequence: 2 givenname: Eugene surname: O’Riordan fullname: O’Riordan, Eugene email: eugene.oriordan@dcu.ie organization: School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin9, Ireland – sequence: 3 givenname: Martin orcidid: 0000-0003-2085-7354 surname: Stynes fullname: Stynes, Martin email: m.stynes@csrc.ac.cn organization: Applied and Computational Mathematics Division, Beijing Computational Science Research Center, Beijing, P. R. China |
| BookMark | eNp1kN1LwzAUxYNMcM69-hzwuTNpkn7g05hOhYl7mM8lbW9mpG1qkk7239tuA0H06Z4L53c591yiUWMaQOiakhkVVNwWtayDkNA4IISmZ2hMI5IGKUvS0UnzhJMLNHVO54QkIQ15TMeoXZhmB3YLTQFYN3htnPZ6B3ija8DKWCzxUjfaA77XSoE9GF_Av5sSz9u20lBibwaXlYXXppEVPtw8LMEAda5XeG1NXkF9hc6VrBxMT3OC3pYPm8VTsHp9fF7MV0HBROr7tHFJRQIgIIxznhAlBFGUKkYgFZFMZaloXkgWx4yHMSOSqSiGiCuRizKUbIJujndbaz47cD77MJ3t07ks5H0vPBE07V2zo6uwxjkLKmutrqXdZ5RkQ7HZUGw2FJsNxfYA_wUU2svhVW-lrv7H7o7Yl6w82BK2ttv34ifU3yBNKGPsG7WNkv0 |
| CitedBy_id | crossref_primary_10_1007_s10915_022_01803_0 crossref_primary_10_1016_j_camwa_2024_01_001 crossref_primary_10_1080_00207160_2020_1846731 crossref_primary_10_1515_cmam_2021_0053 crossref_primary_10_3390_fractalfract8070390 crossref_primary_10_1007_s10910_025_01718_9 crossref_primary_10_1090_mcom_3552 crossref_primary_10_1016_j_apnum_2018_08_006 crossref_primary_10_1007_s10614_023_10386_3 crossref_primary_10_1016_j_enganabound_2021_01_011 crossref_primary_10_1080_00207160_2022_2056697 crossref_primary_10_1137_20M1313015 crossref_primary_10_1016_j_camwa_2025_07_036 crossref_primary_10_11650_tjm_241101 crossref_primary_10_1080_01630563_2021_1936019 crossref_primary_10_1016_j_apnum_2021_11_006 crossref_primary_10_1016_j_cjph_2025_06_040 crossref_primary_10_1002_num_23115 crossref_primary_10_1002_mma_6908 crossref_primary_10_1515_cmam_2020_0158 crossref_primary_10_3390_math13111899 crossref_primary_10_1007_s12190_025_02448_6 crossref_primary_10_1016_j_amc_2023_128457 crossref_primary_10_1007_s13540_022_00063_x crossref_primary_10_1007_s40995_021_01180_7 crossref_primary_10_1016_j_camwa_2025_05_019 crossref_primary_10_1016_j_amc_2020_125316 crossref_primary_10_3390_fractalfract9060333 crossref_primary_10_1016_j_cnsns_2025_108824 crossref_primary_10_1016_j_apnum_2019_01_004 crossref_primary_10_1016_j_matcom_2020_10_014 crossref_primary_10_1080_00207160_2017_1410544 crossref_primary_10_1007_s12591_025_00708_2 crossref_primary_10_1016_j_camwa_2021_08_012 crossref_primary_10_1002_mma_6850 crossref_primary_10_1080_00207160_2023_2254412 crossref_primary_10_1007_s11401_025_0006_3 crossref_primary_10_1093_imanum_draa015 crossref_primary_10_1016_j_matcom_2023_08_013 crossref_primary_10_1016_j_camwa_2019_12_006 crossref_primary_10_1137_19M1300686 crossref_primary_10_1016_j_apnum_2018_11_014 crossref_primary_10_1016_j_cam_2021_113746 crossref_primary_10_1002_mma_8199 crossref_primary_10_1515_cmam_2022_0231 crossref_primary_10_1002_num_22937 crossref_primary_10_1007_s11075_024_01789_w crossref_primary_10_1016_j_amc_2024_128609 crossref_primary_10_1515_cmam_2017_0036 |
| Cites_doi | 10.1051/m2an/2016017 10.1016/j.jcp.2014.08.050 10.1137/16M1082329 10.1093/imanum/dru063 10.1007/978-3-319-57099-0_8 10.1201/9781482285727 10.1007/s11075-010-9379-8 10.1093/imanum/drp057 10.1515/fca-2016-0080 10.1007/978-3-642-14574-2 |
| ContentType | Journal Article |
| Copyright | This work is published under https://creativecommons.org/publicdomain/zero/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: This work is published under https://creativecommons.org/publicdomain/zero/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1515/cmam-2017-0019 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | CrossRef ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1609-9389 |
| EndPage | 42 |
| ExternalDocumentID | 10_1515_cmam_2017_0019 10_1515_cmam_2017_001918133 |
| GrantInformation_xml | – fundername: Ministerio de Economía y Competitividad grantid: MTM2016-75139-R – fundername: National Natural Science Foundation of China grantid: 91430216; NSAF U1530401 |
| GroupedDBID | 0R~ 2WC 4.4 8FE 8FG AAAEU AAAVF AACIX AADQG AAFPC AAGVJ AAILP AAJBH AAKDD AALGR AAONY AAOUV AAPJK AAQCX AARVR AASOL AASQH AAWFC AAXCG ABAOT ABAQN ABFKT ABIQR ABJCF ABJNI ABMBZ ABPLS ABRQL ABSOE ABUVI ABWLS ABXMZ ABYKJ ACDEB ACEFL ACGFS ACHNZ ACIPV ACIWK ACMKP ACONX ACPMA ACUND ACXLN ACZBO ADEQT ADGQD ADGYE ADJVZ ADNPR ADOZN AECWL AEDGQ AEGVQ AEICA AEJQW AEKEB AEMOE AENEX AEQDQ AEQLX AERZL AEXIE AFBAA AFBDD AFBQV AFCXV AFFHD AFGNR AFKRA AFQUK AFYRI AGBEV AGQYU AHCWZ AHVWV AHXUK AIERV AIKXB AIWOI AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS ALUKF ALWYM AMAVY AMVHM ARAPS ASYPN AZMOX BAKPI BBCWN BCIFA BENPR BGLVJ BLHJL CCPQU CFGNV DASCH DSRVY EBS EJD FSTRU HCIFZ HZ~ IY9 J9A K.~ K6V K7- KDIRW L6V M7S O9- P2P P62 PHGZM PHGZT PQGLB PTHSS QD8 SA. SLJYH TR2 UK5 WTRAM AAYXX CITATION JQ2 |
| ID | FETCH-LOGICAL-c359t-487d158ee5e27b480f550f11f30e956a9adf1bca377342730a3f67e64f5b5d2a3 |
| ISICitedReferencesCount | 62 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418564900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1609-4840 |
| IngestDate | Wed Aug 13 10:39:12 EDT 2025 Tue Nov 18 20:55:39 EST 2025 Sat Nov 29 04:47:01 EST 2025 Sat Nov 29 01:31:10 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c359t-487d158ee5e27b480f550f11f30e956a9adf1bca377342730a3f67e64f5b5d2a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2538-9027 0000-0003-2085-7354 |
| OpenAccessLink | http://www.degruyter.com/downloadpdf/j/cmam.2018.18.issue-1/cmam-2017-0019/cmam-2017-0019.xml |
| PQID | 2493848519 |
| PQPubID | 2038872 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2493848519 crossref_primary_10_1515_cmam_2017_0019 crossref_citationtrail_10_1515_cmam_2017_0019 walterdegruyter_journals_10_1515_cmam_2017_001918133 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-1-1 20180101 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-1-1 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Minsk |
| PublicationPlace_xml | – name: Minsk |
| PublicationTitle | Journal of computational methods in applied mathematics |
| PublicationYear | 2018 |
| Publisher | De Gruyter Walter de Gruyter GmbH |
| Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
| References | 2023033115122839896_j_cmam-2017-0019_ref_009_w2aab3b7d277b1b6b1ab2ab9Aa 2023033115122839896_j_cmam-2017-0019_ref_008_w2aab3b7d277b1b6b1ab2ab8Aa 2023033115122839896_j_cmam-2017-0019_ref_007_w2aab3b7d277b1b6b1ab2ab7Aa 2023033115122839896_j_cmam-2017-0019_ref_006_w2aab3b7d277b1b6b1ab2ab6Aa 2023033115122839896_j_cmam-2017-0019_ref_005_w2aab3b7d277b1b6b1ab2ab5Aa 2023033115122839896_j_cmam-2017-0019_ref_004_w2aab3b7d277b1b6b1ab2ab4Aa 2023033115122839896_j_cmam-2017-0019_ref_003_w2aab3b7d277b1b6b1ab2ab3Aa 2023033115122839896_j_cmam-2017-0019_ref_002_w2aab3b7d277b1b6b1ab2ab2Aa 2023033115122839896_j_cmam-2017-0019_ref_001_w2aab3b7d277b1b6b1ab2ab1Aa 2023033115122839896_j_cmam-2017-0019_ref_010_w2aab3b7d277b1b6b1ab2ac10Aa |
| References_xml | – ident: 2023033115122839896_j_cmam-2017-0019_ref_005_w2aab3b7d277b1b6b1ab2ab5Aa doi: 10.1051/m2an/2016017 – ident: 2023033115122839896_j_cmam-2017-0019_ref_006_w2aab3b7d277b1b6b1ab2ab6Aa doi: 10.1016/j.jcp.2014.08.050 – ident: 2023033115122839896_j_cmam-2017-0019_ref_010_w2aab3b7d277b1b6b1ab2ac10Aa doi: 10.1137/16M1082329 – ident: 2023033115122839896_j_cmam-2017-0019_ref_004_w2aab3b7d277b1b6b1ab2ab4Aa doi: 10.1093/imanum/dru063 – ident: 2023033115122839896_j_cmam-2017-0019_ref_003_w2aab3b7d277b1b6b1ab2ab3Aa doi: 10.1007/978-3-319-57099-0_8 – ident: 2023033115122839896_j_cmam-2017-0019_ref_002_w2aab3b7d277b1b6b1ab2ab2Aa doi: 10.1201/9781482285727 – ident: 2023033115122839896_j_cmam-2017-0019_ref_008_w2aab3b7d277b1b6b1ab2ab8Aa doi: 10.1007/s11075-010-9379-8 – ident: 2023033115122839896_j_cmam-2017-0019_ref_007_w2aab3b7d277b1b6b1ab2ab7Aa doi: 10.1093/imanum/drp057 – ident: 2023033115122839896_j_cmam-2017-0019_ref_009_w2aab3b7d277b1b6b1ab2ab9Aa doi: 10.1515/fca-2016-0080 – ident: 2023033115122839896_j_cmam-2017-0019_ref_001_w2aab3b7d277b1b6b1ab2ab1Aa doi: 10.1007/978-3-642-14574-2 |
| SSID | ssib008212471 ssj0033936 ssib006285865 |
| Score | 2.3272085 |
| Snippet | A standard finite difference method on a uniform mesh is used to solve a time-fractional convection-diffusion initial-boundary value problem. Such problems... |
| SourceID | proquest crossref walterdegruyter |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 33 |
| SubjectTerms | 65M06 65M12 65M15 Boundary value problems Caputo Fractional Derivative Convection-diffusion equation Convergence Error analysis Finite difference method Initial Boundary Value Problem L1 Scheme Mathematical analysis Weak Singularity |
| Title | Convergence in Positive Time for a Finite Difference Method Applied to a Fractional Convection-Diffusion Problem |
| URI | https://www.degruyter.com/doi/10.1515/cmam-2017-0019 https://www.proquest.com/docview/2493848519 |
| Volume | 18 |
| WOSCitedRecordID | wos000418564900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1609-9389 dateEnd: 20200731 omitProxy: false ssIdentifier: ssj0033936 issn: 1609-4840 databaseCode: P5Z dateStart: 20160101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1609-9389 dateEnd: 20200731 omitProxy: false ssIdentifier: ssj0033936 issn: 1609-4840 databaseCode: K7- dateStart: 20160101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1609-9389 dateEnd: 20200731 omitProxy: false ssIdentifier: ssj0033936 issn: 1609-4840 databaseCode: M7S dateStart: 20160101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1609-9389 dateEnd: 20200731 omitProxy: false ssIdentifier: ssj0033936 issn: 1609-4840 databaseCode: BENPR dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbYLgc4rHiKx1L5gOCwMiSxUztHWLWsxG6poCsqLpGTOKgSzZY-YPn3zNhO0u4DwYGLlbqum3i-jMee8XyEPBdKaGSvYkkeZ0yUsmTozGJFDrN_kcnS6MCSTcjhUE0myci7C5aWTkBWlTo_T-b_VdRQB8LGo7P_IO6mU6iAaxA6lCB2KP9K8IcYR75wOTanFbLxuvAgPOzhYiYPBlO0NEHdlXWW2RNLJN3YpGCQarRpc79TaPu0Hxj-aI1bbHjGALlorjFvc0sXUW81OqJqG3ur_X_MmoSxW1sPobqw9fDZOvQPCoDzYv0LL9_NsqMNZdpDBjvl0jG9Mm1dwh1t0GUN3CDNqVOXI-OSlo9tQox8pmcgeZhl0U5t57Pahz_8kA5Oj4_TcX8yfjH_zpBpDD3ynnZlh-xGMk5Uh-y-7Q9HH1stFKlYbfh-FczuQjaBQ5wnlniyeTqfChRu6vX2LW2bOu36Ze-nHbjCfHXDtmHQjO-QPS8q-sYh6C65Yap75PZJK5X7ZL6BJTqtaI0liliigCWqqcMSbbFEHZaoxxJdnWGrBkv0KixRj6UH5HTQHx8eMU_RwXIeJyt4flmEsTImNpHMhApKWPGWYVjywMDKWye6KMMs11xKLsBSDjQve9L0RBlncRFp_pB0qrPKPCK0V4hQ5ToTmEFIF9BzlBkVgjQSmFOC5DFh9Wimuc9fjzQq31Jcx8Lopzj6KY4-BmpC-5dN-7nL3HJty_1aOKl_kZdpJAClAtYj8LW4ILC21dUdgtXM-ZM_9_qU3GpfqX3SWS3W5hm5mf9YTZeLrsdkl-y8l6yLAcmfoBzFX34D7XyuGQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+in+Positive+Time+for+a+Finite+Difference+Method+Applied+to+a+Fractional+Convection-Diffusion+Problem&rft.jtitle=Journal+of+computational+methods+in+applied+mathematics&rft.date=2018-01-01&rft.pub=Walter+de+Gruyter+GmbH&rft.issn=1609-4840&rft.eissn=1609-9389&rft.volume=18&rft.issue=1&rft.spage=33&rft_id=info:doi/10.1515%2Fcmam-2017-0019&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1609-4840&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1609-4840&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1609-4840&client=summon |