Convergence in Positive Time for a Finite Difference Method Applied to a Fractional Convection-Diffusion Problem

A standard finite difference method on a uniform mesh is used to solve a time-fractional convection-diffusion initial-boundary value problem. Such problems typically exhibit a mild singularity at the initial time . It is proved that the rate of convergence of the maximum nodal error on any subdomain...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational methods in applied mathematics Vol. 18; no. 1; pp. 33 - 42
Main Authors: Gracia, José Luis, O’Riordan, Eugene, Stynes, Martin
Format: Journal Article
Language:English
Published: Minsk De Gruyter 01.01.2018
Walter de Gruyter GmbH
Subjects:
ISSN:1609-4840, 1609-9389
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A standard finite difference method on a uniform mesh is used to solve a time-fractional convection-diffusion initial-boundary value problem. Such problems typically exhibit a mild singularity at the initial time . It is proved that the rate of convergence of the maximum nodal error on any subdomain that is bounded away from is higher than the rate obtained when the maximum nodal error is measured over the entire space-time domain. Numerical results are provided to illustrate the theoretical error bounds.
AbstractList A standard finite difference method on a uniform mesh is used to solve a time-fractional convection-diffusion initial-boundary value problem. Such problems typically exhibit a mild singularity at the initial time t = 0 {t=0} . It is proved that the rate of convergence of the maximum nodal error on any subdomain that is bounded away from t = 0 {t=0} is higher than the rate obtained when the maximum nodal error is measured over the entire space-time domain. Numerical results are provided to illustrate the theoretical error bounds.
A standard finite difference method on a uniform mesh is used to solve a time-fractional convection-diffusion initial-boundary value problem. Such problems typically exhibit a mild singularity at the initial time . It is proved that the rate of convergence of the maximum nodal error on any subdomain that is bounded away from is higher than the rate obtained when the maximum nodal error is measured over the entire space-time domain. Numerical results are provided to illustrate the theoretical error bounds.
A standard finite difference method on a uniform mesh is used to solve a time-fractional convection-diffusion initial-boundary value problem. Such problems typically exhibit a mild singularity at the initial time [Image omitted]. It is proved that the rate of convergence of the maximum nodal error on any subdomain that is bounded away from [Image omitted] is higher than the rate obtained when the maximum nodal error is measured over the entire space-time domain. Numerical results are provided to illustrate the theoretical error bounds.
Author Gracia, José Luis
Stynes, Martin
O’Riordan, Eugene
Author_xml – sequence: 1
  givenname: José Luis
  orcidid: 0000-0003-2538-9027
  surname: Gracia
  fullname: Gracia, José Luis
  email: jlgracia@unizar.es
  organization: Department of Applied Mathematics, University of Zaragoza, 0018Zaragoza, Spain
– sequence: 2
  givenname: Eugene
  surname: O’Riordan
  fullname: O’Riordan, Eugene
  email: eugene.oriordan@dcu.ie
  organization: School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin9, Ireland
– sequence: 3
  givenname: Martin
  orcidid: 0000-0003-2085-7354
  surname: Stynes
  fullname: Stynes, Martin
  email: m.stynes@csrc.ac.cn
  organization: Applied and Computational Mathematics Division, Beijing Computational Science Research Center, Beijing, P. R. China
BookMark eNp1kN1LwzAUxYNMcM69-hzwuTNpkn7g05hOhYl7mM8lbW9mpG1qkk7239tuA0H06Z4L53c591yiUWMaQOiakhkVVNwWtayDkNA4IISmZ2hMI5IGKUvS0UnzhJMLNHVO54QkIQ15TMeoXZhmB3YLTQFYN3htnPZ6B3ija8DKWCzxUjfaA77XSoE9GF_Av5sSz9u20lBibwaXlYXXppEVPtw8LMEAda5XeG1NXkF9hc6VrBxMT3OC3pYPm8VTsHp9fF7MV0HBROr7tHFJRQIgIIxznhAlBFGUKkYgFZFMZaloXkgWx4yHMSOSqSiGiCuRizKUbIJujndbaz47cD77MJ3t07ks5H0vPBE07V2zo6uwxjkLKmutrqXdZ5RkQ7HZUGw2FJsNxfYA_wUU2svhVW-lrv7H7o7Yl6w82BK2ttv34ifU3yBNKGPsG7WNkv0
CitedBy_id crossref_primary_10_1007_s10915_022_01803_0
crossref_primary_10_1016_j_camwa_2024_01_001
crossref_primary_10_1080_00207160_2020_1846731
crossref_primary_10_1515_cmam_2021_0053
crossref_primary_10_3390_fractalfract8070390
crossref_primary_10_1007_s10910_025_01718_9
crossref_primary_10_1090_mcom_3552
crossref_primary_10_1016_j_apnum_2018_08_006
crossref_primary_10_1007_s10614_023_10386_3
crossref_primary_10_1016_j_enganabound_2021_01_011
crossref_primary_10_1080_00207160_2022_2056697
crossref_primary_10_1137_20M1313015
crossref_primary_10_1016_j_camwa_2025_07_036
crossref_primary_10_11650_tjm_241101
crossref_primary_10_1080_01630563_2021_1936019
crossref_primary_10_1016_j_apnum_2021_11_006
crossref_primary_10_1016_j_cjph_2025_06_040
crossref_primary_10_1002_num_23115
crossref_primary_10_1002_mma_6908
crossref_primary_10_1515_cmam_2020_0158
crossref_primary_10_3390_math13111899
crossref_primary_10_1007_s12190_025_02448_6
crossref_primary_10_1016_j_amc_2023_128457
crossref_primary_10_1007_s13540_022_00063_x
crossref_primary_10_1007_s40995_021_01180_7
crossref_primary_10_1016_j_camwa_2025_05_019
crossref_primary_10_1016_j_amc_2020_125316
crossref_primary_10_3390_fractalfract9060333
crossref_primary_10_1016_j_cnsns_2025_108824
crossref_primary_10_1016_j_apnum_2019_01_004
crossref_primary_10_1016_j_matcom_2020_10_014
crossref_primary_10_1080_00207160_2017_1410544
crossref_primary_10_1007_s12591_025_00708_2
crossref_primary_10_1016_j_camwa_2021_08_012
crossref_primary_10_1002_mma_6850
crossref_primary_10_1080_00207160_2023_2254412
crossref_primary_10_1007_s11401_025_0006_3
crossref_primary_10_1093_imanum_draa015
crossref_primary_10_1016_j_matcom_2023_08_013
crossref_primary_10_1016_j_camwa_2019_12_006
crossref_primary_10_1137_19M1300686
crossref_primary_10_1016_j_apnum_2018_11_014
crossref_primary_10_1016_j_cam_2021_113746
crossref_primary_10_1002_mma_8199
crossref_primary_10_1515_cmam_2022_0231
crossref_primary_10_1002_num_22937
crossref_primary_10_1007_s11075_024_01789_w
crossref_primary_10_1016_j_amc_2024_128609
crossref_primary_10_1515_cmam_2017_0036
Cites_doi 10.1051/m2an/2016017
10.1016/j.jcp.2014.08.050
10.1137/16M1082329
10.1093/imanum/dru063
10.1007/978-3-319-57099-0_8
10.1201/9781482285727
10.1007/s11075-010-9379-8
10.1093/imanum/drp057
10.1515/fca-2016-0080
10.1007/978-3-642-14574-2
ContentType Journal Article
Copyright This work is published under https://creativecommons.org/publicdomain/zero/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: This work is published under https://creativecommons.org/publicdomain/zero/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
JQ2
DOI 10.1515/cmam-2017-0019
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef

ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1609-9389
EndPage 42
ExternalDocumentID 10_1515_cmam_2017_0019
10_1515_cmam_2017_001918133
GrantInformation_xml – fundername: Ministerio de Economía y Competitividad
  grantid: MTM2016-75139-R
– fundername: National Natural Science Foundation of China
  grantid: 91430216; NSAF U1530401
GroupedDBID 0R~
2WC
4.4
8FE
8FG
AAAEU
AAAVF
AACIX
AADQG
AAFPC
AAGVJ
AAILP
AAJBH
AAKDD
AALGR
AAONY
AAOUV
AAPJK
AAQCX
AARVR
AASOL
AASQH
AAWFC
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABJCF
ABJNI
ABMBZ
ABPLS
ABRQL
ABSOE
ABUVI
ABWLS
ABXMZ
ABYKJ
ACDEB
ACEFL
ACGFS
ACHNZ
ACIPV
ACIWK
ACMKP
ACONX
ACPMA
ACUND
ACXLN
ACZBO
ADEQT
ADGQD
ADGYE
ADJVZ
ADNPR
ADOZN
AECWL
AEDGQ
AEGVQ
AEICA
AEJQW
AEKEB
AEMOE
AENEX
AEQDQ
AEQLX
AERZL
AEXIE
AFBAA
AFBDD
AFBQV
AFCXV
AFFHD
AFGNR
AFKRA
AFQUK
AFYRI
AGBEV
AGQYU
AHCWZ
AHVWV
AHXUK
AIERV
AIKXB
AIWOI
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALUKF
ALWYM
AMAVY
AMVHM
ARAPS
ASYPN
AZMOX
BAKPI
BBCWN
BCIFA
BENPR
BGLVJ
BLHJL
CCPQU
CFGNV
DASCH
DSRVY
EBS
EJD
FSTRU
HCIFZ
HZ~
IY9
J9A
K.~
K6V
K7-
KDIRW
L6V
M7S
O9-
P2P
P62
PHGZM
PHGZT
PQGLB
PTHSS
QD8
SA.
SLJYH
TR2
UK5
WTRAM
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c359t-487d158ee5e27b480f550f11f30e956a9adf1bca377342730a3f67e64f5b5d2a3
ISICitedReferencesCount 62
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418564900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1609-4840
IngestDate Wed Aug 13 10:39:12 EDT 2025
Tue Nov 18 20:55:39 EST 2025
Sat Nov 29 04:47:01 EST 2025
Sat Nov 29 01:31:10 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c359t-487d158ee5e27b480f550f11f30e956a9adf1bca377342730a3f67e64f5b5d2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2538-9027
0000-0003-2085-7354
OpenAccessLink http://www.degruyter.com/downloadpdf/j/cmam.2018.18.issue-1/cmam-2017-0019/cmam-2017-0019.xml
PQID 2493848519
PQPubID 2038872
PageCount 10
ParticipantIDs proquest_journals_2493848519
crossref_primary_10_1515_cmam_2017_0019
crossref_citationtrail_10_1515_cmam_2017_0019
walterdegruyter_journals_10_1515_cmam_2017_001918133
PublicationCentury 2000
PublicationDate 2018-1-1
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-1-1
  day: 01
PublicationDecade 2010
PublicationPlace Minsk
PublicationPlace_xml – name: Minsk
PublicationTitle Journal of computational methods in applied mathematics
PublicationYear 2018
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2023033115122839896_j_cmam-2017-0019_ref_009_w2aab3b7d277b1b6b1ab2ab9Aa
2023033115122839896_j_cmam-2017-0019_ref_008_w2aab3b7d277b1b6b1ab2ab8Aa
2023033115122839896_j_cmam-2017-0019_ref_007_w2aab3b7d277b1b6b1ab2ab7Aa
2023033115122839896_j_cmam-2017-0019_ref_006_w2aab3b7d277b1b6b1ab2ab6Aa
2023033115122839896_j_cmam-2017-0019_ref_005_w2aab3b7d277b1b6b1ab2ab5Aa
2023033115122839896_j_cmam-2017-0019_ref_004_w2aab3b7d277b1b6b1ab2ab4Aa
2023033115122839896_j_cmam-2017-0019_ref_003_w2aab3b7d277b1b6b1ab2ab3Aa
2023033115122839896_j_cmam-2017-0019_ref_002_w2aab3b7d277b1b6b1ab2ab2Aa
2023033115122839896_j_cmam-2017-0019_ref_001_w2aab3b7d277b1b6b1ab2ab1Aa
2023033115122839896_j_cmam-2017-0019_ref_010_w2aab3b7d277b1b6b1ab2ac10Aa
References_xml – ident: 2023033115122839896_j_cmam-2017-0019_ref_005_w2aab3b7d277b1b6b1ab2ab5Aa
  doi: 10.1051/m2an/2016017
– ident: 2023033115122839896_j_cmam-2017-0019_ref_006_w2aab3b7d277b1b6b1ab2ab6Aa
  doi: 10.1016/j.jcp.2014.08.050
– ident: 2023033115122839896_j_cmam-2017-0019_ref_010_w2aab3b7d277b1b6b1ab2ac10Aa
  doi: 10.1137/16M1082329
– ident: 2023033115122839896_j_cmam-2017-0019_ref_004_w2aab3b7d277b1b6b1ab2ab4Aa
  doi: 10.1093/imanum/dru063
– ident: 2023033115122839896_j_cmam-2017-0019_ref_003_w2aab3b7d277b1b6b1ab2ab3Aa
  doi: 10.1007/978-3-319-57099-0_8
– ident: 2023033115122839896_j_cmam-2017-0019_ref_002_w2aab3b7d277b1b6b1ab2ab2Aa
  doi: 10.1201/9781482285727
– ident: 2023033115122839896_j_cmam-2017-0019_ref_008_w2aab3b7d277b1b6b1ab2ab8Aa
  doi: 10.1007/s11075-010-9379-8
– ident: 2023033115122839896_j_cmam-2017-0019_ref_007_w2aab3b7d277b1b6b1ab2ab7Aa
  doi: 10.1093/imanum/drp057
– ident: 2023033115122839896_j_cmam-2017-0019_ref_009_w2aab3b7d277b1b6b1ab2ab9Aa
  doi: 10.1515/fca-2016-0080
– ident: 2023033115122839896_j_cmam-2017-0019_ref_001_w2aab3b7d277b1b6b1ab2ab1Aa
  doi: 10.1007/978-3-642-14574-2
SSID ssib008212471
ssj0033936
ssib006285865
Score 2.3272085
Snippet A standard finite difference method on a uniform mesh is used to solve a time-fractional convection-diffusion initial-boundary value problem. Such problems...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 33
SubjectTerms 65M06
65M12
65M15
Boundary value problems
Caputo Fractional Derivative
Convection-diffusion equation
Convergence
Error analysis
Finite difference method
Initial Boundary Value Problem
L1 Scheme
Mathematical analysis
Weak Singularity
Title Convergence in Positive Time for a Finite Difference Method Applied to a Fractional Convection-Diffusion Problem
URI https://www.degruyter.com/doi/10.1515/cmam-2017-0019
https://www.proquest.com/docview/2493848519
Volume 18
WOSCitedRecordID wos000418564900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1609-9389
  dateEnd: 20200731
  omitProxy: false
  ssIdentifier: ssj0033936
  issn: 1609-4840
  databaseCode: P5Z
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1609-9389
  dateEnd: 20200731
  omitProxy: false
  ssIdentifier: ssj0033936
  issn: 1609-4840
  databaseCode: K7-
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1609-9389
  dateEnd: 20200731
  omitProxy: false
  ssIdentifier: ssj0033936
  issn: 1609-4840
  databaseCode: M7S
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1609-9389
  dateEnd: 20200731
  omitProxy: false
  ssIdentifier: ssj0033936
  issn: 1609-4840
  databaseCode: BENPR
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbYLgc4rHiKx1L5gOCwMiSxUztHWLWsxG6poCsqLpGTOKgSzZY-YPn3zNhO0u4DwYGLlbqum3i-jMee8XyEPBdKaGSvYkkeZ0yUsmTozGJFDrN_kcnS6MCSTcjhUE0myci7C5aWTkBWlTo_T-b_VdRQB8LGo7P_IO6mU6iAaxA6lCB2KP9K8IcYR75wOTanFbLxuvAgPOzhYiYPBlO0NEHdlXWW2RNLJN3YpGCQarRpc79TaPu0Hxj-aI1bbHjGALlorjFvc0sXUW81OqJqG3ur_X_MmoSxW1sPobqw9fDZOvQPCoDzYv0LL9_NsqMNZdpDBjvl0jG9Mm1dwh1t0GUN3CDNqVOXI-OSlo9tQox8pmcgeZhl0U5t57Pahz_8kA5Oj4_TcX8yfjH_zpBpDD3ynnZlh-xGMk5Uh-y-7Q9HH1stFKlYbfh-FczuQjaBQ5wnlniyeTqfChRu6vX2LW2bOu36Ze-nHbjCfHXDtmHQjO-QPS8q-sYh6C65Yap75PZJK5X7ZL6BJTqtaI0liliigCWqqcMSbbFEHZaoxxJdnWGrBkv0KixRj6UH5HTQHx8eMU_RwXIeJyt4flmEsTImNpHMhApKWPGWYVjywMDKWye6KMMs11xKLsBSDjQve9L0RBlncRFp_pB0qrPKPCK0V4hQ5ToTmEFIF9BzlBkVgjQSmFOC5DFh9Wimuc9fjzQq31Jcx8Lopzj6KY4-BmpC-5dN-7nL3HJty_1aOKl_kZdpJAClAtYj8LW4ILC21dUdgtXM-ZM_9_qU3GpfqX3SWS3W5hm5mf9YTZeLrsdkl-y8l6yLAcmfoBzFX34D7XyuGQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+in+Positive+Time+for+a+Finite+Difference+Method+Applied+to+a+Fractional+Convection-Diffusion+Problem&rft.jtitle=Journal+of+computational+methods+in+applied+mathematics&rft.date=2018-01-01&rft.pub=Walter+de+Gruyter+GmbH&rft.issn=1609-4840&rft.eissn=1609-9389&rft.volume=18&rft.issue=1&rft.spage=33&rft_id=info:doi/10.1515%2Fcmam-2017-0019&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1609-4840&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1609-4840&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1609-4840&client=summon