Stochastic chance constrained mixed-integer nonlinear programming models and the solution approaches for refinery short-term crude oil scheduling problem

Stochastic chance constrained mixed-integer nonlinear programming (SCC-MINLP) models are developed in this paper to solve the refinery short-term crude oil scheduling problem which concerns crude oil unloading, mixing, transferring and multilevel inventory control under demands uncertainty of distil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling Jg. 34; H. 11; S. 3231 - 3243
Hauptverfasser: Cao, Cuiwen, Gu, Xingsheng, Xin, Zhong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier Inc 01.11.2010
Elsevier
Schlagworte:
ISSN:0307-904X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stochastic chance constrained mixed-integer nonlinear programming (SCC-MINLP) models are developed in this paper to solve the refinery short-term crude oil scheduling problem which concerns crude oil unloading, mixing, transferring and multilevel inventory control under demands uncertainty of distillation units. The objective of these models is the minimum expected value of total operation cost. It is the first time that the uncertain demands of Crude oil Distillation Units (CDUs) in these problems are set as random variables which have discrete and continuous joint probability distributions. This situation is close to the real world industry use. To reduce the computation complexity, these SCC-MINLP models are transformed into their equivalent stochastic chance constrained mixed-integer linear programming models (SCC-MILP). Stochastic simulation and stochastic sampling technologies are introduced in detail to solve these complex SCC-MILP models. Finally, case studies are effectively solved with the proposed approaches.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0307-904X
DOI:10.1016/j.apm.2010.02.015