Low-Power Scalable TSPI: A Modular Off-Chip Network for Edge AI Accelerators
In this paper, we present a novel off-chip network architecture, the Tile Serial Peripheral Interface (TSPI), designed for low-power, scalable edge AI accelerators. Our approach modifies the conventional SPI to support a modular network structure that facilitates the scalable connection of multiple...
Saved in:
| Published in: | IEEE access Vol. 12; pp. 141448 - 141459 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we present a novel off-chip network architecture, the Tile Serial Peripheral Interface (TSPI), designed for low-power, scalable edge AI accelerators. Our approach modifies the conventional SPI to support a modular network structure that facilitates the scalable connection of multiple accelerators. The TSPI network employs a subset mapping algorithm for efficient routing and integrates the message passing interface (MPI) protocol to ensure rapid data distribution and aggregation. This modular architecture significantly reduces power consumption and improves processing speed. Experimental results demonstrate that our proposed TSPI network achieves a 54.7% reduction in power consumption and an 82.3% decrease in switching power compared to traditional SPI networks, along with a 23% increase in processing speed when utilizing 16 nodes. These advancements make the TSPI network an effective solution for enhancing AI performance in edge computing environments. |
|---|---|
| AbstractList | In this paper, we present a novel off-chip network architecture, the Tile Serial Peripheral Interface (TSPI), designed for low-power, scalable edge AI accelerators. Our approach modifies the conventional SPI to support a modular network structure that facilitates the scalable connection of multiple accelerators. The TSPI network employs a subset mapping algorithm for efficient routing and integrates the message passing interface (MPI) protocol to ensure rapid data distribution and aggregation. This modular architecture significantly reduces power consumption and improves processing speed. Experimental results demonstrate that our proposed TSPI network achieves a 54.7% reduction in power consumption and an 82.3% decrease in switching power compared to traditional SPI networks, along with a 23% increase in processing speed when utilizing 16 nodes. These advancements make the TSPI network an effective solution for enhancing AI performance in edge computing environments. |
| Author | Park, Daejin Park, Seunghyun |
| Author_xml | – sequence: 1 givenname: Seunghyun orcidid: 0000-0002-2416-2472 surname: Park fullname: Park, Seunghyun organization: School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, South Korea – sequence: 2 givenname: Daejin orcidid: 0000-0002-5560-873X surname: Park fullname: Park, Daejin email: boltanut@knu.ac.kr organization: School of Electronics Engineering, Kyungpook National University, Daegu, South Korea |
| BookMark | eNpNUcFu1DAQtVCRKKVfAAdLnLN44tiOuUXRAittaaUtZ2sSj0uWsF6crFb8PS6pqs5lRk_z3jzNe8suDvFAjL0HsQIQ9lPTtuvdblWKslrJSmur1St2WYK2hVRSX7yY37DradqLXHWGlLlk2208F3fxTInvehyxG4nf7-42n3nDb6I_jZj4bQhF-3M48u80n2P6xUNMfO0fiDcb3vQ9jZRwjml6x14HHCe6fupX7MeX9X37rdjeft20zbbopbJzITvhy672UiBW1iAYgNoGqJXGWgewJUhRl0i99yb0lTZdZZTS0AnyAoK8YptF10fcu2MafmP66yIO7j8Q04PDNA_9SA67On9EBmEsVgoskg5BCYDOdxCEylofF61jin9ONM1uH0_pkO07CVBmL6as8pZctvoUpylReL4Kwj2m4JYU3GMK7imFzPqwsAYiesHQdf69kf8ALtuBuQ |
| CODEN | IAECCG |
| Cites_doi | 10.1109/DATE.2007.364414 10.1109/JETCAS.2021.3129415 10.1109/TC.1985.6312192 10.1109/ICPADS.2008.44 10.1109/MC.1982.1653825 10.1109/HCS55958.2022.9895534 10.1109/TPDS.2021.3104240 10.1109/TC.2011.237 10.1109/ISCA.2018.00066 10.1016/j.micpro.2020.103138 10.1007/s42979-023-02239-5 10.3390/s20092533 10.23919/DATE.2017.7927211 10.1145/3579371.3589350 10.1016/j.procs.2020.06.048 10.1109/MSPEC.2004.1270547 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2024.3466965 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore (IEEE/IET Electronic Library - IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 141459 |
| ExternalDocumentID | oai_doaj_org_article_ab86693f079a4519ae6ff5011bdb1f05 10_1109_ACCESS_2024_3466965 10689577 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Institute of Information and Communications Technology Planning and Evaluation (IITP) – fundername: Development of Flexible Software-Hardware (SW-HW) Conjunctive Solution for On-Edge Self-Supervised Learning (30%) grantid: RS-2023-00228970 – fundername: Brain Korea 21 4th Generation (BK21 FOUR) Project grantid: 4199990113966 – fundername: Ministry of Education (10%, 10%, respectively) grantid: NRF-2018R1A6A1A03025109; NRF-2022R1I1A3069260 – fundername: Korea Institute for Advancement of Technology (KIAT) – fundername: Basic Science Research Program through the National Research Foundation of Korea (NRF) – fundername: Processing-in-Memory Computing (PIM) Semiconductor Design Research Center (20%) grantid: 2022-0-01170 – fundername: Korean Government [Ministry of Trade, Industry and Energy (MOTIE)] through the Human Resources Development (HRD) Program for Industrial Innovation (10%) grantid: RS-2024-00415938 – fundername: Korean Government [Ministry of Science and Information Communication Technology (MSIT)] through the Metamorphic Approach of Unstructured Validation/Verification for Analyzing Binary Code (20%) grantid: 2021-0-00944 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c359t-3b0d2b8d30aa497a171189f1856a86f19213082aecdd7fc467b475561b0ed01f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001328992900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:46:18 EDT 2025 Mon Jun 30 15:43:13 EDT 2025 Sat Nov 29 04:27:06 EST 2025 Wed Aug 27 02:18:11 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-3b0d2b8d30aa497a171189f1856a86f19213082aecdd7fc467b475561b0ed01f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2416-2472 0000-0002-5560-873X |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10689577 |
| PQID | 3112921724 |
| PQPubID | 4845423 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_10689577 proquest_journals_3112921724 doaj_primary_oai_doaj_org_article_ab86693f079a4519ae6ff5011bdb1f05 crossref_primary_10_1109_ACCESS_2024_3466965 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref14 ref11 ref10 ref2 ref1 ref17 ref16 Coates (ref15) ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref17 doi: 10.1109/DATE.2007.364414 – ident: ref2 doi: 10.1109/JETCAS.2021.3129415 – ident: ref13 doi: 10.1109/TC.1985.6312192 – ident: ref14 doi: 10.1109/ICPADS.2008.44 – ident: ref8 doi: 10.1109/MC.1982.1653825 – ident: ref7 doi: 10.1109/HCS55958.2022.9895534 – ident: ref9 doi: 10.1109/TPDS.2021.3104240 – ident: ref11 doi: 10.1109/TC.2011.237 – ident: ref4 doi: 10.1109/ISCA.2018.00066 – ident: ref10 doi: 10.1016/j.micpro.2020.103138 – ident: ref12 doi: 10.1007/s42979-023-02239-5 – ident: ref1 doi: 10.3390/s20092533 – ident: ref16 doi: 10.23919/DATE.2017.7927211 – ident: ref6 doi: 10.1145/3579371.3589350 – start-page: 1337 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref15 article-title: Deep learning with COTS HPC systems – ident: ref3 doi: 10.1016/j.procs.2020.06.048 – ident: ref5 doi: 10.1109/MSPEC.2004.1270547 |
| SSID | ssj0000816957 |
| Score | 2.2996225 |
| Snippet | In this paper, we present a novel off-chip network architecture, the Tile Serial Peripheral Interface (TSPI), designed for low-power, scalable edge AI... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 141448 |
| SubjectTerms | Accelerator architectures Accelerators Algorithms Computational modeling Computer architecture Distributed databases Edge AI Edge computing edge device Indexes low power Low power electronics Message passing Modular structures MPI Network architecture off-chip network Performance evaluation Power consumption Random access memory Scalability subset mapping algorithm TSPI |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQYoAB8SkKBXlgJNSpncRmC1UrKpVSqYC6Wf6ELm3VFvj7nJMURWJgYXWsOH7n-O6cy3sIXVsaJ9y3WcS4d5CgJGnEDXeRUdwQC_E5LzQjXwfZcMgnEzGqSX2FmrCSHrgErqU0T1NBPcmEClQoyqXeJ7AqtdWxL9lL4VotmSr2YB6nIskqmqGYiFbe6cCMICFss1vK4JbBndRcUcHYX0ms_NqXC2fTO0D7VZSI8_LpDtGWmx2hvRp34DEaDOZf0ShonOEx4Bz-gMLP41H_Duf4cW5DdSl-8j7qvE8XeFgWe2OIUHHXvjmc93FuDLic4iv76gS99LrPnYeokkaIDE3EOqKa2LbmlhKlmMhUnEGiIDw431Tx1AeSs8BDo5yxNvMGdkPNsqCEqYmzJPb0FG3P5jN3hrBS0MoJuCWqmWdeO8WV8lpQ6Gh9u4FuNijJRcmAIYvMgQhZgioDqLICtYHuA5I_XQN9ddEARpWVUeVfRm2gk2CH2ngpB3NmDdTcGEZW79pK0hAyBp0tdv4fY1-g3TCf8pilibbXyw93iXbM53q6Wl4Vy-wbxeDRtg priority: 102 providerName: Directory of Open Access Journals |
| Title | Low-Power Scalable TSPI: A Modular Off-Chip Network for Edge AI Accelerators |
| URI | https://ieeexplore.ieee.org/document/10689577 https://www.proquest.com/docview/3112921724 https://doaj.org/article/ab86693f079a4519ae6ff5011bdb1f05 |
| Volume | 12 |
| WOSCitedRecordID | wos001328992900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFLYG2gEOYzDQygD5sCMBp3Zie7dQFYFUukqwiZvln6yXFtEybvztvOcEVGnisEsUOS-J4y_2e8_2-x4h3wMvK5X6ohAqRXBQqrpQXsXCW-VZAPtc5ZyRv0dyPFa3t3rSBavnWJgYY958Fk_wNK_lh7l_xKky6OG10pWUa2RNyroN1nqbUMEMEnCxYxYqmT5tBgP4CPAB--KEi7rWqEFWtE8m6e-yqvwzFGf9cr71nzX7TD51hiRtWuS3yYc42yGbK_SCX8hoNH8qJpgGjV4DFBgkRW-uJ5c_aEOv5gE3oNKfKRWDP9N7Om73g1MwYukw3EXaXNLGe9BKeSF-sUt-nQ9vBhdFlz2h8LzSy4I7FvpOBc6sFVraUoIvoRPo59qqOiEPGlLV2OhDkMnDgOmExGSZjsXAysT3yPpsPotfCbUWShUDzcWdSCK5aJW1yWkOgiH1e-T4tVXNfUuSYbJzwbRpQTAIgulA6JEzbPk3UWS4zgXQpKbrMMY6BcI8MaktUuDYWKdUwWjkgisTg4fsIgwr72sR6JGDVyBN1x0XhqNViam4xP47t30jG1jFdnLlgKwvHx7jIfno_y6ni4ej7KnD8ep5eJT_uhd47NGQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUoVCocSj-oWEqpDz021ImdxOYWViBWDduV2FbcLH9SLruIXeDvM-MEtFLFobcocRLHL_bM2J73CPnmeV7KWIhMyBggQCmrTDoZMmekYx78c5k0I_-09XgsLy_VpE9WT7kwIYS0-Swc4mFay_dzd4dTZdDDK6nKun5FNkohCtalaz1PqaCGBFzuuYVypn40wyF8BkSBhTjkoqoU2pAV-5No-ntdlX8G42RhTrf_s27vyNvelaRNh_17shZmH8jWCsHgR9K284dsgkJo9ALAwDQpOr2YjI5oQ8_nHreg0l8xZsO_1zd03O0Ip-DG0hN_FWgzoo1zYJfSUvxih_w-PZkOz7JePyFzvFTLjFvmCys9Z8YIVZu8hmhCRbDQlZFVRCY0JKsxwXlfRwdDphU1ymVaFjzLI_9E1mfzWdgl1Bg4KxnYLm5FFNEGI42JVnEo6GMxIN-fWlXfdDQZOoUXTOkOBI0g6B6EATnGln8uihzX6QQ0qe67jDZWQmEeWa0MkuCYUMVYwnhkvc0jg4fsIAwr7-sQGJD9JyB13yEXmqNfiWJcYu-F276SN2fT81a3o_HPz2QTq9tNteyT9eXtXfhCXrv75fXi9iD9dY-nzNKx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Power+Scalable+TSPI%3A+A+Modular+Off-Chip+Network+for+Edge+AI+Accelerators&rft.jtitle=IEEE+access&rft.au=Park%2C+Seunghyun&rft.au=Park%2C+Daejin&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=141448&rft.epage=141459&rft_id=info:doi/10.1109%2FACCESS.2024.3466965&rft.externalDocID=10689577 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |