Multipliers of Dirichlet series and monomial series expansions of holomorphic functions in infinitely many variables

Let H ∞ be the set of all ordinary Dirichlet series D = ∑ n a n n - s representing bounded holomorphic functions on the right half plane. A completely multiplicative sequence ( b n ) of complex numbers is said to be an ℓ 1 -multiplier for H ∞ whenever ∑ n | a n b n | < ∞ for every D ∈ H ∞ . We st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen Jg. 368; H. 1-2; S. 837 - 876
Hauptverfasser: Bayart, Frédéric, Defant, Andreas, Frerick, Leonhard, Maestre, Manuel, Sevilla-Peris, Pablo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2017
Springer Nature B.V
Schlagworte:
ISSN:0025-5831, 1432-1807
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let H ∞ be the set of all ordinary Dirichlet series D = ∑ n a n n - s representing bounded holomorphic functions on the right half plane. A completely multiplicative sequence ( b n ) of complex numbers is said to be an ℓ 1 -multiplier for H ∞ whenever ∑ n | a n b n | < ∞ for every D ∈ H ∞ . We study the problem of describing such sequences ( b n ) in terms of the asymptotic decay of the subsequence ( b p j ) , where p j denotes the j th prime number. Given a completely multiplicative sequence b = ( b n ) we prove (among other results): b is an ℓ 1 -multiplier for H ∞ provided | b p j | < 1 for all j and lim ¯ n 1 log n ∑ j = 1 n b p j ∗ 2 < 1 , and conversely, if b is an ℓ 1 -multiplier for H ∞ , then | b p j | < 1 for all j and lim ¯ n 1 log n ∑ j = 1 n b p j ∗ 2 ≤ 1 (here b ∗ stands for the decreasing rearrangement of b ). Following an ingenious idea of Harald Bohr it turns out that this problem is intimately related with the question of characterizing those sequences z in the infinite dimensional polydisk D ∞ (the open unit ball of ℓ ∞ ) for which every bounded and holomorphic function f on D ∞ has an absolutely convergent monomial series expansion ∑ α ∂ α f ( 0 ) α ! z α . Moreover, we study analogous problems in Hardy spaces of Dirichlet series and Hardy spaces of functions on the infinite dimensional polytorus T ∞ .
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-016-1511-1