Parallelizing Exact and Approximate String Matching via Inclusive Scan on a GPU
In this study, to substantially improve the runtimes of exact and approximate string matching algorithms, we propose a tribrid parallel method for bit-parallel algorithms such as the Shift-Or and Wu-Manber algorithms. Our underlying idea is to interpret bit-parallel algorithms as inclusive-scan oper...
Uloženo v:
| Vydáno v: | IEEE transactions on parallel and distributed systems Ročník 28; číslo 7; s. 1989 - 2002 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.07.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1045-9219, 1558-2183 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this study, to substantially improve the runtimes of exact and approximate string matching algorithms, we propose a tribrid parallel method for bit-parallel algorithms such as the Shift-Or and Wu-Manber algorithms. Our underlying idea is to interpret bit-parallel algorithms as inclusive-scan operations, which allow these bit-parallel algorithms to run efficiently on a graphics processing unit (GPU); we achieve this speed-up here because inclusive-scan operations not only eliminate duplicate searches between threads but also realize a GPU-friendly memory access pattern that maximizes memory read/write throughput. To realize our ideas, we first define two binary operators and then present a proof regarding the associativity of these operators, which is necessary for the parallelization of the inclusive-scan operations. Finally, we integrate the inclusive-scan scheme into a previous segmentation-based scheme to maximize search throughput, identifying the best tradeoff point between synchronization cost and duplicate work. Through our experiments, we compared our proposed method with previous segmentation-based methods and indexing-based sequence aligners. For online string matching, our proposed method performed 6.7-16.7 times faster than previous methods, achieving a search throughput of up to 1.88 terabits per second (Tbps) on a GeForce GTX TITAN X GPU. We therefore conclude that our proposed method is quite effective for decreasing the runtimes of online string matching of short patterns. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1045-9219 1558-2183 |
| DOI: | 10.1109/TPDS.2016.2645222 |