A new augmented Lyapunov–Krasovskii functional approach to exponential passivity for neural networks with time-varying delays

In this paper, the problem of exponential passivity analysis for uncertain neural networks with time-varying delays is considered. By constructing new augmented Lyapunov–Krasovskii’s functionals and some novel analysis techniques, improved delay-dependent criteria for checking the exponential passiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation Jg. 217; H. 24; S. 10231 - 10238
Hauptverfasser: Kwon, O.M., Park, Ju H., Lee, S.M., Cha, E.J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier Inc 15.08.2011
Elsevier
Schlagworte:
ISSN:0096-3003, 1873-5649
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the problem of exponential passivity analysis for uncertain neural networks with time-varying delays is considered. By constructing new augmented Lyapunov–Krasovskii’s functionals and some novel analysis techniques, improved delay-dependent criteria for checking the exponential passivity of the neural networks are established. The proposed criteria are represented in terms of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms. A numerical example is included to show the superiority of our results.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2011.05.021