A new augmented Lyapunov–Krasovskii functional approach to exponential passivity for neural networks with time-varying delays
In this paper, the problem of exponential passivity analysis for uncertain neural networks with time-varying delays is considered. By constructing new augmented Lyapunov–Krasovskii’s functionals and some novel analysis techniques, improved delay-dependent criteria for checking the exponential passiv...
Gespeichert in:
| Veröffentlicht in: | Applied mathematics and computation Jg. 217; H. 24; S. 10231 - 10238 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier Inc
15.08.2011
Elsevier |
| Schlagworte: | |
| ISSN: | 0096-3003, 1873-5649 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, the problem of exponential passivity analysis for uncertain neural networks with time-varying delays is considered. By constructing new augmented Lyapunov–Krasovskii’s functionals and some novel analysis techniques, improved delay-dependent criteria for checking the exponential passivity of the neural networks are established. The proposed criteria are represented in terms of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms. A numerical example is included to show the superiority of our results. |
|---|---|
| Bibliographie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0096-3003 1873-5649 |
| DOI: | 10.1016/j.amc.2011.05.021 |