Efficient Dynamic Pinning of Parallelized Applications by Distributed Reinforcement Learning

This paper introduces a resource allocation framework specifically tailored for addressing the problem of dynamic placement (or pinning) of parallelized applications to processing units. Under the proposed setup each thread of the parallelized application constitutes an independent decision maker (o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of parallel programming Ročník 47; číslo 1; s. 24 - 38
Hlavní autoři: Chasparis, Georgios C., Rossbory, Michael
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.02.2019
Springer Nature B.V
Témata:
ISSN:0885-7458, 1573-7640
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper introduces a resource allocation framework specifically tailored for addressing the problem of dynamic placement (or pinning) of parallelized applications to processing units. Under the proposed setup each thread of the parallelized application constitutes an independent decision maker (or agent), which (based on its own prior performance measurements and its own prior CPU-affinities) decides on which processing unit to run next. Decisions are updated recursively for each thread by a resource manager/scheduler which runs in parallel to the application’s threads and periodically records their performances and assigns to them new CPU affinities. For updating the CPU-affinities, the scheduler uses a distributed reinforcement-learning algorithm, each branch of which is responsible for assigning a new placement strategy to each thread. The proposed framework is flexible enough to address alternative optimization criteria, such as maximum average processing speed and minimum speed variance among threads. We demonstrate analytically that convergence to locally-optimal placements is achieved asymptotically. Finally, we validate these results through experiments in Linux platforms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-7458
1573-7640
DOI:10.1007/s10766-017-0541-y