Integrating particle swarm optimization with genetic algorithms for solving nonlinear optimization problems

Heuristic optimization provides a robust and efficient approach for solving complex real-world problems. The aim of this paper is to introduce a hybrid approach combining two heuristic optimization techniques, particle swarm optimization (PSO) and genetic algorithms (GA). Our approach integrates the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics Vol. 235; no. 5; pp. 1446 - 1453
Main Authors: Abd-El-Wahed, W.F., Mousa, A.A., El-Shorbagy, M.A.
Format: Journal Article
Language:English
Published: Kidlington Elsevier B.V 2011
Elsevier
Subjects:
ISSN:0377-0427, 1879-1778
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Heuristic optimization provides a robust and efficient approach for solving complex real-world problems. The aim of this paper is to introduce a hybrid approach combining two heuristic optimization techniques, particle swarm optimization (PSO) and genetic algorithms (GA). Our approach integrates the merits of both GA and PSO and it has two characteristic features. Firstly, the algorithm is initialized by a set of random particles which travel through the search space. During this travel an evolution of these particles is performed by integrating PSO and GA. Secondly, to restrict velocity of the particles and control it, we introduce a modified constriction factor. Finally, the results of various experimental studies using a suite of multimodal test functions taken from the literature have demonstrated the superiority of the proposed approach to finding the global optimal solution.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2010.08.030