An Efficient Domain Decomposition Laguerre-FDTD Method for Two-Dimensional Scattering Problems

In this paper, an efficient domain decomposition technique is introduced into the unconditionally stable finite-difference time-domain (FDTD) method based on weighted Laguerre polynomials to solve two-dimensional (2-D) electromagnetic scattering problems. The whole computational space is decomposed...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on antennas and propagation Ročník 61; číslo 5; s. 2639 - 2645
Hlavní autoři: He, Guo-Qiang, Shao, Wei, Wang, Xiao-Hua, Wang, Bing-Zhong
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.05.2013
Institute of Electrical and Electronics Engineers
Témata:
ISSN:0018-926X, 1558-2221
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, an efficient domain decomposition technique is introduced into the unconditionally stable finite-difference time-domain (FDTD) method based on weighted Laguerre polynomials to solve two-dimensional (2-D) electromagnetic scattering problems. The whole computational space is decomposed into multiple subdomains where there is no direct field coupling between any two different subdomains. For the large sparse matrix equation generated by the implicit scheme, the domain decomposition technique transforms this large scale equation into some independent smaller equations. With the total-field/scattered-field boundary and Mur's second-order absorbing boundary condition, the radar cross sections of two 2-D structures are calculated. The numerical examples verify the accuracy and efficiency of the proposed method.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2013.2242836