Nature-inspired and hybrid optimization algorithms on interval Type-2 fuzzy controller for servo processes: a comparative performance study

In this paper, performance evaluations of six well-known nature-inspired algorithms have been reported containing genetic algorithm, cuckoo search, particle swarm optimization, differential evolution, bee colony, and combined particle swarm optimization and differential evolution (CPSODE) algorithms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN applied sciences Jg. 2; H. 7; S. 1292
Hauptverfasser: De (Maity), Ritu Rani, Mudi, Rajani K., Dey, Chanchal
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.07.2020
Springer Nature B.V
Schlagworte:
ISSN:2523-3963, 2523-3971
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, performance evaluations of six well-known nature-inspired algorithms have been reported containing genetic algorithm, cuckoo search, particle swarm optimization, differential evolution, bee colony, and combined particle swarm optimization and differential evolution (CPSODE) algorithms. Based on these optimization algorithms, input and output scaling factors of an interval Type-2 fuzzy PID controller (IT2-FLC) are chosen for closed-loop servo tracking. Optimal values of the scaling factors are chosen by minimization of the objective function which is defined based on the closed-loop controller performance criteria. A detailed comparative analysis is reported based on the simulation and experimental results. Performance analysis reveals that improved performance, reliability, robustness, and lesser noise sensitivity are reported by IT2-FLC with the optimal values obtained by the hybrid algorithm CPSODE.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2523-3963
2523-3971
DOI:10.1007/s42452-020-3024-5