Convex quadratic relaxations for mixed-integer nonlinear programs in power systems

This paper presents a set of new convex quadratic relaxations for nonlinear and mixed-integer nonlinear programs arising in power systems. The considered models are motivated by hybrid discrete/continuous applications where existing approximations do not provide optimality guarantees. The new relaxa...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical programming computation Ročník 9; číslo 3; s. 321 - 367
Hlavní autori: Hijazi, Hassan, Coffrin, Carleton, Hentenryck, Pascal Van
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2017
Springer Nature B.V
Predmet:
ISSN:1867-2949, 1867-2957
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper presents a set of new convex quadratic relaxations for nonlinear and mixed-integer nonlinear programs arising in power systems. The considered models are motivated by hybrid discrete/continuous applications where existing approximations do not provide optimality guarantees. The new relaxations offer computational efficiency along with minimal optimality gaps, providing an interesting alternative to state-of-the-art semidefinite programming relaxations. Three case studies in optimal power flow, optimal transmission switching and capacitor placement demonstrate the benefits of the new relaxations.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1867-2949
1867-2957
DOI:10.1007/s12532-016-0112-z