An extension of fast iterative shrinkage‐thresholding algorithm to Riemannian optimization for sparse principal component analysis

Sparse principal component analysis (PCA), an important variant of PCA, attempts to find sparse loading vectors when conducting dimension reduction. This paper considers the nonsmooth Riemannian optimization problem associated with the ScoTLASS model1 for sparse PCA which can impose orthogonality an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical linear algebra with applications Ročník 29; číslo 1
Hlavní autoři: Huang, Wen, Wei, Ke
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Wiley Subscription Services, Inc 01.01.2022
Témata:
ISSN:1070-5325, 1099-1506
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Sparse principal component analysis (PCA), an important variant of PCA, attempts to find sparse loading vectors when conducting dimension reduction. This paper considers the nonsmooth Riemannian optimization problem associated with the ScoTLASS model1 for sparse PCA which can impose orthogonality and sparsity simultaneously. A Riemannian proximal method is proposed in the work of Chen et al.9 for the efficient solution of this optimization problem. In this paper, two acceleration schemes are introduced. First and foremost, we extend the FISTA method from the Euclidean space to the Riemannian manifold to solve sparse PCA, leading to the accelerated Riemannian proximal gradient method. Since the Riemannian optimization problem for sparse PCA is essentially nonconvex, a restarting technique is adopted to stabilize the accelerated method without sacrificing the fast convergence. Second, a diagonal preconditioner is proposed for the Riemannian proximal subproblem which can further accelerate the convergence of the Riemannian proximal methods. Numerical evaluations establish the computational advantages of the proposed methods over the existing proximal gradient methods on a manifold. Additionally, a short result concerning the convergence of the Riemannian subgradients of a sequence is established, which, together with the result in the work of Chen et al.,9 can show the stationary point convergence of the Riemannian proximal methods.
AbstractList Sparse principal component analysis (PCA), an important variant of PCA, attempts to find sparse loading vectors when conducting dimension reduction. This paper considers the nonsmooth Riemannian optimization problem associated with the ScoTLASS model for sparse PCA which can impose orthogonality and sparsity simultaneously. A Riemannian proximal method is proposed in the work of Chen et al. for the efficient solution of this optimization problem. In this paper, two acceleration schemes are introduced. First and foremost, we extend the FISTA method from the Euclidean space to the Riemannian manifold to solve sparse PCA, leading to the accelerated Riemannian proximal gradient method. Since the Riemannian optimization problem for sparse PCA is essentially nonconvex, a restarting technique is adopted to stabilize the accelerated method without sacrificing the fast convergence. Second, a diagonal preconditioner is proposed for the Riemannian proximal subproblem which can further accelerate the convergence of the Riemannian proximal methods. Numerical evaluations establish the computational advantages of the proposed methods over the existing proximal gradient methods on a manifold. Additionally, a short result concerning the convergence of the Riemannian subgradients of a sequence is established, which, together with the result in the work of Chen et al., can show the stationary point convergence of the Riemannian proximal methods.
Sparse principal component analysis (PCA), an important variant of PCA, attempts to find sparse loading vectors when conducting dimension reduction. This paper considers the nonsmooth Riemannian optimization problem associated with the ScoTLASS model1 for sparse PCA which can impose orthogonality and sparsity simultaneously. A Riemannian proximal method is proposed in the work of Chen et al.9 for the efficient solution of this optimization problem. In this paper, two acceleration schemes are introduced. First and foremost, we extend the FISTA method from the Euclidean space to the Riemannian manifold to solve sparse PCA, leading to the accelerated Riemannian proximal gradient method. Since the Riemannian optimization problem for sparse PCA is essentially nonconvex, a restarting technique is adopted to stabilize the accelerated method without sacrificing the fast convergence. Second, a diagonal preconditioner is proposed for the Riemannian proximal subproblem which can further accelerate the convergence of the Riemannian proximal methods. Numerical evaluations establish the computational advantages of the proposed methods over the existing proximal gradient methods on a manifold. Additionally, a short result concerning the convergence of the Riemannian subgradients of a sequence is established, which, together with the result in the work of Chen et al.,9 can show the stationary point convergence of the Riemannian proximal methods.
Author Huang, Wen
Wei, Ke
Author_xml – sequence: 1
  givenname: Wen
  orcidid: 0000-0001-8324-2416
  surname: Huang
  fullname: Huang, Wen
  email: wen.huang@xmu.edu.cn
  organization: Xiamen University
– sequence: 2
  givenname: Ke
  surname: Wei
  fullname: Wei, Ke
  email: kewei@fudan.edu.cn
  organization: Fudan University
BookMark eNp1kM1KAzEUhYNUsK2CjxBw42ZqMjPJNMtS_IOiILoe0kymk5pJxiRV68qFD-Az-iSmrSvR1b1wv3M49wxAz1gjATjGaIQRSs-M5qM0R2wP9DFiLMEE0d5mL1BCspQcgIH3S4QQJSzrg4-JgfI1SOOVNdDWsOY-QBWk40E9S-gbp8wjX8iv98_QOOkbqytlFpDrhXUqNC0MFt4p2XJjFI8WXVCteovq6FdbB33HnZewiz5CdVxDYdsuZjYBcsP12it_CPZrrr08-plD8HBxfj-9Sma3l9fTySwRGYmvCEEozlkmKlrQTBBcF1RkglU8J2PBMsyQpLnEohaSkLxi9ZyyORsXgsXzGGdDcLLz7Zx9WkkfyqVduRjClylFDFOS5yhSpztKOOu9k3UZs7fcrUuMyk3HZey43HQc0dEvVKiwfT04rvRfgmQneFFarv81Lm9mky3_DbSck0E
CitedBy_id crossref_primary_10_1002_nla_2557
crossref_primary_10_1007_s10915_023_02165_x
crossref_primary_10_1109_TPAMI_2022_3215914
crossref_primary_10_1007_s10898_023_01326_4
crossref_primary_10_1007_s10589_023_00451_w
crossref_primary_10_12677_AAM_2022_113119
crossref_primary_10_1007_s10915_024_02664_5
crossref_primary_10_1088_1361_6420_ad0c42
crossref_primary_10_1007_s13160_025_00692_8
crossref_primary_10_1007_s10915_023_02266_7
crossref_primary_10_1137_23M1565097
crossref_primary_10_1007_s10915_025_02806_3
Cites_doi 10.1137/1.9781611974997
10.1137/1.9781611971309
10.1145/361573.361582
10.1515/9781400830244
10.1007/s10915-017-0624-3
10.1007/s10107-013-0701-9
10.1198/106186006X113430
10.1007/s10915-013-9740-x
10.1007/978-0-387-31256-9
10.1137/16M1069298
10.1137/18M122457X
10.1137/130921428
10.18637/jss.v084.i10
10.1016/j.jmva.2007.06.007
10.1198/1061860032148
10.1023/A:1022675100677
10.1007/978-3-642-02431-3
10.1137/050645506
10.1016/j.na.2011.02.023
10.1093/imanum/drv043
10.1007/s10107-021-01632-3
10.1093/biostatistics/kxp008
10.1137/16M1108145
10.1109/JPROC.2018.2846588
10.1007/s10444-015-9426-z
10.1137/16M1097572
10.1007/s10957-017-1093-4
10.1080/02331930290019413
10.1137/080716542
10.1057/jors.1984.92
10.1371/journal.pgen.1002517
10.1007/s10208-013-9150-3
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nla.2409
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1099-1506
EndPage n/a
ExternalDocumentID 10_1002_nla_2409
NLA2409
Genre article
GrantInformation_xml – fundername: NSFC
  funderid: 11801088
– fundername: The Fundamental Research Funds for the Central Universities
  funderid: 20720190060
– fundername: Shanghai Sailing Program
  funderid: 18YF1401600
– fundername: National Natural Science Foundation of China
  funderid: 12001455
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWS
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3599-cc561493cd6763c51f76c3c9da458c93190e64e1cfce554d9fb69b987c98c9813
IEDL.DBID DRFUL
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000693982900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1070-5325
IngestDate Fri Jul 25 12:09:19 EDT 2025
Tue Nov 18 22:25:27 EST 2025
Sat Nov 29 05:31:59 EST 2025
Wed Jan 22 16:28:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3599-cc561493cd6763c51f76c3c9da458c93190e64e1cfce554d9fb69b987c98c9813
Notes Funding information
National Natural Science Foundation of China, 12001455; NSFC, 11801088; Shanghai Sailing Program, 18YF1401600; The Fundamental Research Funds for the Central Universities, 20720190060
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8324-2416
PQID 2609165440
PQPubID 2034341
PageCount 20
ParticipantIDs proquest_journals_2609165440
crossref_primary_10_1002_nla_2409
crossref_citationtrail_10_1002_nla_2409
wiley_primary_10_1002_nla_2409_NLA2409
PublicationCentury 2000
PublicationDate January 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Numerical linear algebra with applications
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 11
2015; 15
2015; 36
2018; 28
2018; 106
2010
2017; 27
2002; 51
2006; 15
2008; 9
1998
2008
1996
2014; 24
2006
2017; 173
2008; 99
2018; 84
2003; 12
1983; 269
2009; 10
2018; 4
1990
2020; 30
2021
2011; 72
1984; 35
2016; 42
2014; 58
2017
2014
2013
2009; 2
2018; 76
1998; 97
2014; 10
2012; 8
2007; 49
1972; 15
2014; 146
e_1_2_8_28_1
e_1_2_8_29_1
Nesterov YE (e_1_2_8_30_1) 1983; 269
Huang W (e_1_2_8_13_1) 2013
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
Mishra B (e_1_2_8_16_1) 2014
e_1_2_8_7_1
Boumal N (e_1_2_8_15_1) 2014
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
Vandereycken B (e_1_2_8_14_1) 2010
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
Yang WH (e_1_2_8_27_1) 2014; 10
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
Golub GH (e_1_2_8_37_1) 1996
e_1_2_8_36_1
e_1_2_8_35_1
Huang W (e_1_2_8_42_1) 2018; 4
e_1_2_8_38_1
Journée M (e_1_2_8_8_1) 2010; 11
d'Aspremont A (e_1_2_8_4_1) 2008; 9
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 36
  start-page: 1167
  issue: 3
  year: 2015
  end-page: 1192
  article-title: Nonsmooth trust region algorithms for locally Lipschitz functions on Riemannian manifolds
  publication-title: IMA J Numer Anal
– volume: 28
  start-page: 433
  issue: 1
  year: 2018
  end-page: 58
  article-title: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems
  publication-title: SIAM J Optim
– volume: 106
  start-page: 1311
  issue: 8
  year: 2018
  end-page: 20
  article-title: A selective overview of sparse principal component analysis
  publication-title: Proc IEEE
– volume: 35
  start-page: 455
  year: 1984
  article-title: Problem complexity and method efficiency in optimization
  publication-title: J Oper Res Soc.
– volume: 15
  start-page: 820
  issue: 9
  year: 1972
  end-page: 6
  article-title: Solution of the matrix equation AX+ XB= C [F4]
  publication-title: Commun ACM
– volume: 269
  start-page: 543
  year: 1983
  end-page: 7
  article-title: A method for solving the convex programming problem with convergence rate $O(1/k 2)$
  publication-title: Dokl Akas Nauk SSSR (In Russian)
– volume: 15
  start-page: 715
  issue: 3
  year: 2015
  end-page: 32
  article-title: Adaptive restart for accelerated gradient schemes
  publication-title: Found Comput Math
– volume: 49
  start-page: 434
  issue: 3
  year: 2007
  end-page: 48
  article-title: A direct formulation for sparse PCA using semidefinite programming
  publication-title: SIAM Rev
– volume: 9
  start-page: 1269
  year: 2008
  end-page: 94
  article-title: Optimal solutions for sparse principal component analysis
  publication-title: J Mach Learn Res
– year: 1996
– volume: 4
  start-page: 43:1
  issue: 44
  year: 2018
  end-page: 43:21
  article-title: ROPTLIB: an object‐oriented C++ library for optimization on Riemannian manifolds
  publication-title: ACM Trans Math Softw
– volume: 58
  start-page: 431
  issue: 2
  year: 2014
  end-page: 49
  article-title: A splitting method for orthogonality constrained problems
  publication-title: J Sci Comput
– volume: 99
  start-page: 1015
  issue: 6
  year: 2008
  end-page: 34
  article-title: Sparse principal component analysis via regularized low rank matrix approximation
  publication-title: J Multivar Anal
– volume: 10
  start-page: 415
  issue: 2
  year: 2014
  end-page: 34
  article-title: Optimality conditions for the nonlinear programming problems on Riemannian manifolds
  publication-title: Pacific J Optim
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  end-page: 202
  article-title: A fast iterative shrinkage‐thresholding algorithm for linear inverse problems
  publication-title: SIAM J Imag Sci
– volume: 76
  start-page: 364
  issue: 1
  year: 2018
  end-page: 89
  article-title: A regularized semi‐smooth Newton method with projection steps for composite convex programs
  publication-title: J Sci Comput
– year: 1990
– year: 2014
– volume: 28
  start-page: 596
  issue: 1
  year: 2018
  end-page: 619
  article-title: Line search algorithms for locally Lipschitz functions on Riemannian manifolds
  publication-title: SIAM J Optim
– year: 2010
– year: 1998
– volume: 84
  start-page: 1
  issue: 10
  year: 2018
  end-page: 37
  article-title: SpaSM: a MATLAB toolbox for sparse statistical modeling
  publication-title: J Stat Softw
– volume: 51
  start-page: 257
  issue: 2
  year: 2002
  end-page: 70
  article-title: Proximal point algorithm on Riemannian manifolds
  publication-title: Optimization
– volume: 42
  start-page: 333
  year: 2016
  end-page: 360
  article-title: ϵ‐subgradient algorithms for locally lipschitz functions on Riemannian manifolds
  publication-title: Adv Comput Math
– volume: 173
  start-page: 548
  issue: 2
  year: 2017
  end-page: 62
  article-title: Iteration‐complexity of gradient, subgradient and proximal point methods on Riemannian manifolds
  publication-title: J Optim Theory Appl
– volume: 12
  start-page: 531
  issue: 3
  year: 2003
  end-page: 47
  article-title: A modified principal component technique based on the Lasso
  publication-title: J Comput Graph Stat
– year: 2021
  article-title: Riemannian proximal gradient methods
  publication-title: Math Program
– year: 2008
– year: 2006
– volume: 72
  start-page: 3884
  issue: 12
  year: 2011
  end-page: 95
  article-title: Generalized gradient and characterization of epi‐Lipschitz sets in Riemannian manifold
  publication-title: Nonlinear Anal Theory Methods Appl
– volume: 8
  issue: 3
  year: 2012
  article-title: The dynamics and prognostic potential of DNA methylation changes at stem cell gene loci in women's cancer
  publication-title: PLoS Genet
– volume: 11
  start-page: 517
  year: 2010
  end-page: 53
  article-title: Generalized power method for sparse principal component analysis
  publication-title: J Mach Learn Res
– volume: 146
  start-page: 459
  year: 2014
  end-page: 94
  article-title: Proximal alternating linearized minimization for nonconvex and nonsmooth problems
  publication-title: Math Program (Ser A)
– volume: 15
  start-page: 265
  issue: 2
  year: 2006
  end-page: 86
  article-title: Sparse principal component analysis
  publication-title: J Comput Graph Stat
– volume: 10
  start-page: 515
  issue: 3
  year: 2009
  end-page: 34
  article-title: A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
  publication-title: Biostatistics
– year: 2017
– volume: 30
  start-page: 210
  issue: 1
  year: 2020
  end-page: 39
  article-title: Proximal gradient method for nonsmooth optimization over the stiefel manifold
  publication-title: SIAM J Optim
– volume: 24
  start-page: 1420
  issue: 3
  year: 2014
  end-page: 43
  article-title: Proximal Newton‐type methods for minimizing composite functions
  publication-title: SIAM J Optim
– volume: 97
  start-page: 93
  issue: 1
  year: 1998
  end-page: 104
  article-title: Subgradient algorithm on Riemannian manifolds
  publication-title: J Optim Theory Appl
– year: 2013
– volume: 27
  start-page: 173
  issue: 1
  year: 2017
  end-page: 89
  article-title: A Riemannian gradient sampling algorithm for nonsmooth optimization on manifolds
  publication-title: SIAM J Optim
– ident: e_1_2_8_28_1
  doi: 10.1137/1.9781611974997
– ident: e_1_2_8_36_1
  doi: 10.1137/1.9781611971309
– ident: e_1_2_8_32_1
  doi: 10.1145/361573.361582
– ident: e_1_2_8_12_1
  doi: 10.1515/9781400830244
– ident: e_1_2_8_33_1
  doi: 10.1007/s10915-017-0624-3
– ident: e_1_2_8_41_1
  doi: 10.1007/s10107-013-0701-9
– ident: e_1_2_8_3_1
  doi: 10.1198/106186006X113430
– volume-title: Riemannian and multilevel optimization for rank‐constrained matrix problems (with applications to Lyapunov equations)
  year: 2010
  ident: e_1_2_8_14_1
– ident: e_1_2_8_39_1
– ident: e_1_2_8_45_1
  doi: 10.1007/s10915-013-9740-x
– volume-title: A Riemannian approach to large‐scale constrained least‐squares with symmetries
  year: 2014
  ident: e_1_2_8_16_1
– ident: e_1_2_8_40_1
  doi: 10.1007/978-0-387-31256-9
– ident: e_1_2_8_21_1
  doi: 10.1137/16M1069298
– volume: 10
  start-page: 415
  issue: 2
  year: 2014
  ident: e_1_2_8_27_1
  article-title: Optimality conditions for the nonlinear programming problems on Riemannian manifolds
  publication-title: Pacific J Optim
– ident: e_1_2_8_10_1
  doi: 10.1137/18M122457X
– ident: e_1_2_8_35_1
  doi: 10.1137/130921428
– ident: e_1_2_8_44_1
  doi: 10.18637/jss.v084.i10
– ident: e_1_2_8_6_1
  doi: 10.1016/j.jmva.2007.06.007
– ident: e_1_2_8_2_1
  doi: 10.1198/1061860032148
– ident: e_1_2_8_17_1
  doi: 10.1023/A:1022675100677
– volume-title: Optimization algorithms on Riemannian manifolds with applications
  year: 2013
  ident: e_1_2_8_13_1
– ident: e_1_2_8_38_1
  doi: 10.1007/978-3-642-02431-3
– volume: 9
  start-page: 1269
  year: 2008
  ident: e_1_2_8_4_1
  article-title: Optimal solutions for sparse principal component analysis
  publication-title: J Mach Learn Res
– volume-title: Matrix computations
  year: 1996
  ident: e_1_2_8_37_1
– volume: 11
  start-page: 517
  year: 2010
  ident: e_1_2_8_8_1
  article-title: Generalized power method for sparse principal component analysis
  publication-title: J Mach Learn Res
– ident: e_1_2_8_5_1
  doi: 10.1137/050645506
– ident: e_1_2_8_26_1
  doi: 10.1016/j.na.2011.02.023
– ident: e_1_2_8_20_1
  doi: 10.1093/imanum/drv043
– ident: e_1_2_8_25_1
  doi: 10.1007/s10107-021-01632-3
– ident: e_1_2_8_7_1
  doi: 10.1093/biostatistics/kxp008
– ident: e_1_2_8_18_1
– ident: e_1_2_8_22_1
  doi: 10.1137/16M1108145
– volume: 4
  start-page: 43:1
  issue: 44
  year: 2018
  ident: e_1_2_8_42_1
  article-title: ROPTLIB: an object‐oriented C++ library for optimization on Riemannian manifolds
  publication-title: ACM Trans Math Softw
– ident: e_1_2_8_9_1
  doi: 10.1109/JPROC.2018.2846588
– ident: e_1_2_8_19_1
  doi: 10.1007/s10444-015-9426-z
– ident: e_1_2_8_34_1
  doi: 10.1137/16M1097572
– ident: e_1_2_8_24_1
  doi: 10.1007/s10957-017-1093-4
– ident: e_1_2_8_23_1
  doi: 10.1080/02331930290019413
– volume-title: Optimization and estimation on manifolds
  year: 2014
  ident: e_1_2_8_15_1
– ident: e_1_2_8_11_1
  doi: 10.1137/080716542
– ident: e_1_2_8_29_1
  doi: 10.1057/jors.1984.92
– ident: e_1_2_8_43_1
  doi: 10.1371/journal.pgen.1002517
– volume: 269
  start-page: 543
  year: 1983
  ident: e_1_2_8_30_1
  article-title: A method for solving the convex programming problem with convergence rate $O(1/k∧2)$
  publication-title: Dokl Akas Nauk SSSR (In Russian)
– ident: e_1_2_8_31_1
  doi: 10.1007/s10208-013-9150-3
SSID ssj0006593
Score 2.329432
Snippet Sparse principal component analysis (PCA), an important variant of PCA, attempts to find sparse loading vectors when conducting dimension reduction. This paper...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Convergence
Euclidean geometry
Euclidean space
Iterative methods
Manifolds (mathematics)
Methods
nonsmooth optimization on manifold
Numerical methods
Optimization
Orthogonality
Principal components analysis
proximal gradient method
Restarting
Riemann manifold
Riemannian optimization
sparse PCA
Title An extension of fast iterative shrinkage‐thresholding algorithm to Riemannian optimization for sparse principal component analysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnla.2409
https://www.proquest.com/docview/2609165440
Volume 29
WOSCitedRecordID wos000693982900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006593
  issn: 1070-5325
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BywADb0R5yUgIptDUeTQeK6BigAohKnWLHMemldqkSgIzAz-A38gv4Zy4BSSQkJgyxE6s3OvzxfcdwIntR7FubGXFbqAsxLfCilAzLO4rVGmpYuHzstlEu9cLBgN2Z05V6lqYih9innDTllH6a23gPMqbX0hDx_wcwxFbhDpFtXVrUL-87_Zv5n7Yryh3cX9jW55DvRn1rE2bs7nfg9EnwvyKU8tA0137zxLXYdXAS9Kp9GEDFmSyCSu3c27WfAteOwkpU986T0ZSRRTPC1KxK6PrI_kww_0pupn3l7cCJZ2bH1SEjx_TbFQMJ6RIyf0IH5gkqFwkRa8zMeWcBDEwQSeV5ZJMqzw-LkefW08TDG-EGw6Ubeh3rx4uri3Ti8ESjseYJYSmDGWOiH30SMJrqbYvHMFi7nqBYGjItvRd2RJKSEQoMVORzyIWtAXD20HL2YFagm_aBSIC2ipxajuibkw5VyryHJfLmEqGAK4BZzOhhMIQlet-GeOwolimJRG2_q4NOJ6PnFbkHD-MOZjJNTTmmYe4iWO6jMu1G3BaSvDX-WHvpqOve38duA_LVJdIlGmaA6gV2ZM8hCXxXIzy7Mgo6QcnnO-r
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60CurBt1ituoLoKTbNq1k8FbUotkVKBW9hs9nVQk1KEj178Af4G_0lzuZRKygInnLIbrJkXt_OZr4BONIdP1CNrbTAcqWG-JZrPmqGxhyJKi1kwB2WNZto9nru_T29nYGzshYm54eYJNyUZWT-Whm4SkjXp1hDR-wU4xGdhTkLtciuwNxFv33XmThiJ-fcxQ2OrtmmYZfcs7pRL-d-j0ZfEHMaqGaRpr3yrzWuwnIBMEkr14g1mBHhOix1J-ysyQa8tUKSJb9VpoxEkkiWpCTnV0bnR5LHGHeo6Gg-Xt9TlHVSHFERNnqI4mH6-ETSiPSH-MAwRPUiEfqdp6KgkyAKJuim4kSQcZ7Jx-WoP9ejEAMcYQULyibctS8H51da0Y1B46ZNqca5Ig2lJg8c9Encbsimw01OA2bZLqdoyrpwLNHgkgvEKAGVvkN96jY5xdtuw9yCSohv2gbCXaORIdWmb1iBwZiUvm1aTASGoAjhqnBSSsXjBVW56pgx8nKSZSOjwlbftQqHk5HjnJ7jhzG1UrBeYaCJh9s4qgq5LL0Kx5kIf53v9Totdd3568ADWLgadDte57p3swuLhiqYyJI2Naik8bPYg3n-kg6TeL_Q2E9zAfOb
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSvRAEC7cED24i-Py24LoKZrJ0pPG06AOiuMgouAtdHrRgTEZkujZgw_gM_okVmcZFRSE_5RDupMmtX1dnfoKYNemkTSNrSzpBdpCfCusCDXD4lSjSistBeVFs4lWrxfc3bGrMTiqa2FKfohRws1YRuGvjYGrodSHX1hDB_wA4xEbh0nPZxStcvLkunPbHTliWnLu4gbHtnzX8WvuWds5rOd-j0afEPMrUC0iTWf-v9a4AHMVwCTtUiMWYUzFSzB7OWJnzZbhtR2TIvltMmUk0UTzLCclvzI6P5I9pLhDRUfz_vKWo6yz6oiK8MF9kvbzh0eSJ-S6jw-MY1QvkqDfeawKOgmiYIJuKs0UGZaZfFyO-XM9iTHAEV6xoKzAbef05vjMqroxWML1GbOEMKShzBWSok8SflO3qHAFk9zzA8HQlG1FPdUUWijEKJLpiLKIBS3B8HbQdFdhIsY3rQERgdMskGorcjzpcK515LseV9JRDCFcA_ZrqYSioio3HTMGYUmy7BRU2Oa7NmBnNHJY0nP8MGazFmxYGWgW4jaOmUIuz27AXiHCX-eHvW7bXNf_OnAbpq9OOmH3vHexATOOqZcocjabMJGnT2oLpsRz3s_Sf5XCfgASqfMW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+extension+of+fast+iterative+shrinkage%E2%80%90thresholding+algorithm+to+Riemannian+optimization+for+sparse+principal+component+analysis&rft.jtitle=Numerical+linear+algebra+with+applications&rft.au=Huang%2C+Wen&rft.au=Wei%2C+Ke&rft.date=2022-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1099-1506&rft.volume=29&rft.issue=1&rft_id=info:doi/10.1002%2Fnla.2409&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-5325&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-5325&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-5325&client=summon