Shake table test and numerical study of self‐centering steel frame with SMA braces
Summary Given their excellent self‐centering and energy‐dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural material in the field of earthquake engineering. This paper presents experimental and numerical studies on a scaled self‐centering steel frame with...
Saved in:
| Published in: | Earthquake engineering & structural dynamics Vol. 46; no. 1; pp. 117 - 137 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Bognor Regis
Wiley Subscription Services, Inc
01.01.2017
|
| Subjects: | |
| ISSN: | 0098-8847, 1096-9845 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Summary
Given their excellent self‐centering and energy‐dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural material in the field of earthquake engineering. This paper presents experimental and numerical studies on a scaled self‐centering steel frame with novel SMA braces (SMAB), which utilize superelastic Ni–Ti wires. The braces were fabricated and cyclically characterized before their installation in a two‐story one‐bay steel frame. The equivalent viscous damping ratio and ‘post‐yield’ stiffness ratio of the tested braces are around 5% and 0.15, respectively. In particular, the frame was seismically designed with nearly all pin connections, including the pinned column bases. To assess the seismic performance of the SMA braced frame (SMABF), a series of shake table tests were conducted, in which the SMABF was subjected to ground motions with incremental seismic intensity levels. No repair or replacement of structural members was performed during the entire series of tests. Experimental results showed that the SMAB could withstand several strong earthquakes with very limited capacity degradation. Thanks to the self‐centering capacity and pin‐connection design, the steel frame was subjected to limited damage and zero residual deformation even if the peak interstory drift ratio exceeded 2%. Good agreement was found between the experimental results and numerical simulations. The current study validates the prospect of using SMAB as a standalone seismic‐resisting component in critical building structures when high seismic performance or earthquake resilience is desirable under moderate and strong earthquakes. Copyright © 2016 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | Given their excellent self-centering and energy-dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural material in the field of earthquake engineering. This paper presents experimental and numerical studies on a scaled self-centering steel frame with novel SMA braces (SMAB), which utilize superelastic Ni-Ti wires. The braces were fabricated and cyclically characterized before their installation in a two-story one-bay steel frame. The equivalent viscous damping ratio and 'post-yield' stiffness ratio of the tested braces are around 5% and 0.15, respectively. In particular, the frame was seismically designed with nearly all pin connections, including the pinned column bases. To assess the seismic performance of the SMA braced frame (SMABF), a series of shake table tests were conducted, in which the SMABF was subjected to ground motions with incremental seismic intensity levels. No repair or replacement of structural members was performed during the entire series of tests. Experimental results showed that the SMAB could withstand several strong earthquakes with very limited capacity degradation. Thanks to the self-centering capacity and pin-connection design, the steel frame was subjected to limited damage and zero residual deformation even if the peak interstory drift ratio exceeded 2%. Good agreement was found between the experimental results and numerical simulations. The current study validates the prospect of using SMAB as a standalone seismic-resisting component in critical building structures when high seismic performance or earthquake resilience is desirable under moderate and strong earthquakes. Summary Given their excellent self-centering and energy-dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural material in the field of earthquake engineering. This paper presents experimental and numerical studies on a scaled self-centering steel frame with novel SMA braces (SMAB), which utilize superelastic Ni-Ti wires. The braces were fabricated and cyclically characterized before their installation in a two-story one-bay steel frame. The equivalent viscous damping ratio and 'post-yield' stiffness ratio of the tested braces are around 5% and 0.15, respectively. In particular, the frame was seismically designed with nearly all pin connections, including the pinned column bases. To assess the seismic performance of the SMA braced frame (SMABF), a series of shake table tests were conducted, in which the SMABF was subjected to ground motions with incremental seismic intensity levels. No repair or replacement of structural members was performed during the entire series of tests. Experimental results showed that the SMAB could withstand several strong earthquakes with very limited capacity degradation. Thanks to the self-centering capacity and pin-connection design, the steel frame was subjected to limited damage and zero residual deformation even if the peak interstory drift ratio exceeded 2%. Good agreement was found between the experimental results and numerical simulations. The current study validates the prospect of using SMAB as a standalone seismic-resisting component in critical building structures when high seismic performance or earthquake resilience is desirable under moderate and strong earthquakes. Copyright © 2016 John Wiley & Sons, Ltd. Summary Given their excellent self‐centering and energy‐dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural material in the field of earthquake engineering. This paper presents experimental and numerical studies on a scaled self‐centering steel frame with novel SMA braces (SMAB), which utilize superelastic Ni–Ti wires. The braces were fabricated and cyclically characterized before their installation in a two‐story one‐bay steel frame. The equivalent viscous damping ratio and ‘post‐yield’ stiffness ratio of the tested braces are around 5% and 0.15, respectively. In particular, the frame was seismically designed with nearly all pin connections, including the pinned column bases. To assess the seismic performance of the SMA braced frame (SMABF), a series of shake table tests were conducted, in which the SMABF was subjected to ground motions with incremental seismic intensity levels. No repair or replacement of structural members was performed during the entire series of tests. Experimental results showed that the SMAB could withstand several strong earthquakes with very limited capacity degradation. Thanks to the self‐centering capacity and pin‐connection design, the steel frame was subjected to limited damage and zero residual deformation even if the peak interstory drift ratio exceeded 2%. Good agreement was found between the experimental results and numerical simulations. The current study validates the prospect of using SMAB as a standalone seismic‐resisting component in critical building structures when high seismic performance or earthquake resilience is desirable under moderate and strong earthquakes. Copyright © 2016 John Wiley & Sons, Ltd. Given their excellent self‐centering and energy‐dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural material in the field of earthquake engineering. This paper presents experimental and numerical studies on a scaled self‐centering steel frame with novel SMA braces (SMAB), which utilize superelastic Ni–Ti wires. The braces were fabricated and cyclically characterized before their installation in a two‐story one‐bay steel frame. The equivalent viscous damping ratio and ‘post‐yield’ stiffness ratio of the tested braces are around 5% and 0.15, respectively. In particular, the frame was seismically designed with nearly all pin connections, including the pinned column bases. To assess the seismic performance of the SMA braced frame (SMABF), a series of shake table tests were conducted, in which the SMABF was subjected to ground motions with incremental seismic intensity levels. No repair or replacement of structural members was performed during the entire series of tests. Experimental results showed that the SMAB could withstand several strong earthquakes with very limited capacity degradation. Thanks to the self‐centering capacity and pin‐connection design, the steel frame was subjected to limited damage and zero residual deformation even if the peak interstory drift ratio exceeded 2%. Good agreement was found between the experimental results and numerical simulations. The current study validates the prospect of using SMAB as a standalone seismic‐resisting component in critical building structures when high seismic performance or earthquake resilience is desirable under moderate and strong earthquakes. Copyright © 2016 John Wiley & Sons, Ltd. |
| Author | Qiu, Canxing Zhu, Songye |
| Author_xml | – sequence: 1 givenname: Canxing surname: Qiu fullname: Qiu, Canxing organization: The Hong Kong Polytechnic University – sequence: 2 givenname: Songye orcidid: 0000-0002-2617-3378 surname: Zhu fullname: Zhu, Songye email: ceszhu@polyu.edu.hk organization: The Hong Kong Polytechnic University |
| BookMark | eNqNkctKBDEQRYMoOD7ATwi4cdNjutN5LQcZH6CIjK6bdLri9JhJa9LNMDs_wW_0S4yPhYiCFFQt7qlLFXcHbfrOA0IHORnnhBTH8ATjQgixgUY5UTxTsmSbaESIkpmUpdhGOzEuCCGUEzFCt7O5fgDc69qlDrHH2jfYD0sIrdEOx35o1rizOIKzr88vBnyfJH-fFACHbdBLwKu2n-PZ1QTXQRuIe2jLahdh_2vuorvT6e3JeXZ5fXZxMrnMDGVKZE1eWwOcaVsXtaSC54yBVUypmnNqlKWWKICmBEpNDRIaqUrNRM1ybURp6C46-vR9DN3TkI6vlm004Jz20A2xyiUvGS-kkP9AGSOiYFwk9PAHuuiG4NMjiSpT0aL8ZmhCF2MAWz2GdqnDuspJ9Z5ElZKo3pNI6PgHatpe923n-6Bb99tC9rmwah2s_zSupjfTD_4NGt-bwg |
| CODEN | IJEEBG |
| CitedBy_id | crossref_primary_10_1016_j_engstruct_2024_118981 crossref_primary_10_1016_j_jobe_2024_110375 crossref_primary_10_1061_JBENF2_BEENG_6069 crossref_primary_10_1016_j_istruc_2022_01_075 crossref_primary_10_1080_13632469_2024_2359425 crossref_primary_10_3390_ma15196589 crossref_primary_10_1016_j_engstruct_2022_114935 crossref_primary_10_1016_j_engstruct_2021_112125 crossref_primary_10_1016_j_engstruct_2023_115632 crossref_primary_10_1016_j_engstruct_2019_01_087 crossref_primary_10_1016_j_jcsr_2022_107480 crossref_primary_10_1016_j_engstruct_2021_112486 crossref_primary_10_1177_1045389X20963167 crossref_primary_10_1016_j_jobe_2022_105337 crossref_primary_10_1016_j_soildyn_2018_07_040 crossref_primary_10_1016_j_jcsr_2024_108575 crossref_primary_10_1186_s43065_022_00070_5 crossref_primary_10_1080_15732479_2025_2486289 crossref_primary_10_1016_j_jobe_2023_108325 crossref_primary_10_1186_s43251_024_00133_5 crossref_primary_10_1088_1361_665X_ac7ca4 crossref_primary_10_1177_1369433220945055 crossref_primary_10_3390_polym14235268 crossref_primary_10_1007_s10518_019_00586_4 crossref_primary_10_1016_j_engstruct_2022_115126 crossref_primary_10_1061_JSENDH_STENG_14330 crossref_primary_10_1061_JSENDH_STENG_14457 crossref_primary_10_1016_j_engstruct_2021_112113 crossref_primary_10_1016_j_engstruct_2022_115125 crossref_primary_10_1016_j_engstruct_2023_115982 crossref_primary_10_1016_j_soildyn_2020_106143 crossref_primary_10_1177_1045389X20987000 crossref_primary_10_4028_www_scientific_net_KEM_763_661 crossref_primary_10_1016_j_jobe_2022_105225 crossref_primary_10_1016_j_jcsr_2023_108186 crossref_primary_10_1088_1757_899X_789_1_012062 crossref_primary_10_1016_j_istruc_2021_06_039 crossref_primary_10_1016_j_istruc_2025_108770 crossref_primary_10_1088_1361_665X_abedf4 crossref_primary_10_1007_s13296_022_00595_1 crossref_primary_10_1016_j_istruc_2025_109982 crossref_primary_10_1016_j_engstruct_2024_118524 crossref_primary_10_1016_j_engstruct_2025_121171 crossref_primary_10_1061__ASCE_ST_1943_541X_0002786 crossref_primary_10_1007_s10518_021_01060_w crossref_primary_10_1016_j_tws_2024_111605 crossref_primary_10_1002_stc_2233 crossref_primary_10_1002_stc_2596 crossref_primary_10_1016_j_conbuildmat_2018_07_047 crossref_primary_10_1016_j_istruc_2024_106620 crossref_primary_10_1016_j_soildyn_2021_106794 crossref_primary_10_1061__ASCE_ST_1943_541X_0002789 crossref_primary_10_1016_j_jcsr_2020_105965 crossref_primary_10_1016_j_soildyn_2024_109066 crossref_primary_10_1002_eqe_3174 crossref_primary_10_1002_eqe_70034 crossref_primary_10_1016_j_istruc_2020_04_025 crossref_primary_10_1016_j_jcsr_2022_107267 crossref_primary_10_1016_j_jcsr_2019_105864 crossref_primary_10_1088_1361_665X_ab6883 crossref_primary_10_1061__ASCE_CF_1943_5509_0001191 crossref_primary_10_1016_j_jcsr_2021_106545 crossref_primary_10_1007_s13296_018_0165_0 crossref_primary_10_1061__ASCE_ST_1943_541X_0003082 crossref_primary_10_1002_stc_2462 crossref_primary_10_1007_s10064_022_02965_9 crossref_primary_10_1155_2018_1946818 crossref_primary_10_1007_s10518_024_01997_8 crossref_primary_10_1016_j_engstruct_2025_121280 crossref_primary_10_1007_s10518_018_0415_8 crossref_primary_10_1007_s13296_021_00519_5 crossref_primary_10_1016_j_jcsr_2024_109198 crossref_primary_10_1016_j_engstruct_2023_116976 crossref_primary_10_1016_j_jcsr_2024_109073 crossref_primary_10_1061__ASCE_ST_1943_541X_0002679 crossref_primary_10_1016_j_tws_2024_111962 crossref_primary_10_1016_j_jcsr_2022_107252 crossref_primary_10_1155_2019_9204362 crossref_primary_10_1016_j_engstruct_2023_116295 crossref_primary_10_1061_JSENDH_STENG_12858 crossref_primary_10_1016_j_soildyn_2025_109490 crossref_primary_10_1016_j_jobe_2023_105944 crossref_primary_10_1016_j_jcsr_2021_106630 crossref_primary_10_1088_1361_665X_ac8efc crossref_primary_10_1002_stc_2337 crossref_primary_10_1061__ASCE_ST_1943_541X_0002127 crossref_primary_10_1016_j_engstruct_2020_110651 crossref_primary_10_1177_1045389X20975473 crossref_primary_10_1016_j_engstruct_2020_110779 crossref_primary_10_1016_j_soildyn_2024_108632 crossref_primary_10_1016_j_jobe_2022_104209 crossref_primary_10_1061_JSENDH_STENG_14762 crossref_primary_10_1061_JSENDH_STENG_14521 crossref_primary_10_1061__ASCE_ST_1943_541X_0003459 crossref_primary_10_1016_j_engstruct_2023_115671 crossref_primary_10_1080_15732479_2020_1835997 crossref_primary_10_1016_j_conbuildmat_2025_141787 crossref_primary_10_1016_j_engstruct_2019_01_049 crossref_primary_10_1016_j_istruc_2023_06_017 crossref_primary_10_1016_j_jcsr_2020_106473 crossref_primary_10_1061_JPCFEV_CFENG_4686 crossref_primary_10_1016_j_engstruct_2021_112708 crossref_primary_10_1016_j_engstruct_2024_117580 crossref_primary_10_1016_j_jobe_2022_104340 crossref_primary_10_1016_j_jcsr_2022_107438 crossref_primary_10_1016_j_jcsr_2022_107559 crossref_primary_10_1016_j_jcsr_2024_108802 crossref_primary_10_1002_stc_3099 crossref_primary_10_1016_j_istruc_2021_08_094 crossref_primary_10_1002_stc_2443 crossref_primary_10_1016_j_istruc_2020_05_058 crossref_primary_10_1016_j_engstruct_2021_112151 crossref_primary_10_1002_eqe_70040 crossref_primary_10_1177_1045389X221109249 crossref_primary_10_1016_j_soildyn_2022_107392 crossref_primary_10_3390_ma15010304 crossref_primary_10_1080_13632469_2021_1997840 crossref_primary_10_1016_j_istruc_2023_105538 crossref_primary_10_1061__ASCE_ST_1943_541X_0002587 crossref_primary_10_1007_s11709_022_0807_3 crossref_primary_10_1016_j_istruc_2024_106943 crossref_primary_10_1061_JSENDH_STENG_12480 crossref_primary_10_1016_j_engstruct_2016_09_051 crossref_primary_10_1016_j_engstruct_2021_113232 crossref_primary_10_1016_j_soildyn_2023_108213 crossref_primary_10_1061__ASCE_ST_1943_541X_0003318 crossref_primary_10_1016_j_engstruct_2023_116664 crossref_primary_10_1002_eqe_4183 crossref_primary_10_1016_j_soildyn_2020_106397 crossref_primary_10_1016_j_tws_2023_111456 crossref_primary_10_1061_JSENDH_STENG_13217 crossref_primary_10_1016_j_engstruct_2019_110021 crossref_primary_10_1016_j_jcsr_2020_106321 crossref_primary_10_1016_j_jcsr_2018_12_026 crossref_primary_10_1016_j_jcsr_2020_106323 crossref_primary_10_1061_JBENF2_BEENG_7123 crossref_primary_10_1016_j_jobe_2023_107015 crossref_primary_10_1016_j_jobe_2024_111233 crossref_primary_10_1007_s13369_024_08734_y crossref_primary_10_1061__ASCE_ST_1943_541X_0002235 crossref_primary_10_3390_buildings15050764 crossref_primary_10_1016_j_engstruct_2021_112368 crossref_primary_10_1016_j_engstruct_2024_117920 crossref_primary_10_1016_j_engstruct_2020_110447 crossref_primary_10_1016_j_engstruct_2022_114603 crossref_primary_10_1088_1361_665X_acfd6e crossref_primary_10_1016_j_soildyn_2020_106283 crossref_primary_10_1016_j_engstruct_2021_113588 crossref_primary_10_1061_JSENDH_STENG_13466 crossref_primary_10_1016_j_jcsr_2019_07_011 crossref_primary_10_1016_j_jobe_2022_104918 crossref_primary_10_1016_j_jcsr_2023_107872 crossref_primary_10_1016_j_soildyn_2024_109033 crossref_primary_10_1016_j_jobe_2022_104358 crossref_primary_10_1016_j_jcsr_2022_107455 crossref_primary_10_1016_j_jcsr_2022_107576 crossref_primary_10_1002_eqe_3421 crossref_primary_10_1016_j_istruc_2020_11_022 crossref_primary_10_1016_j_engstruct_2020_111827 crossref_primary_10_1002_eqe_3914 crossref_primary_10_1002_eqe_3912 crossref_primary_10_1016_j_jcsr_2020_106318 crossref_primary_10_1080_13632469_2022_2127978 crossref_primary_10_1061__ASCE_EM_1943_7889_0001925 crossref_primary_10_1016_j_istruc_2024_105914 crossref_primary_10_1080_13632469_2023_2166163 crossref_primary_10_1007_s43452_025_01185_8 crossref_primary_10_1080_15732479_2021_1887290 crossref_primary_10_1016_j_jobe_2021_103950 crossref_primary_10_1016_j_istruc_2021_04_042 crossref_primary_10_1088_1361_665X_ab8c28 crossref_primary_10_1002_eqe_3231 crossref_primary_10_1016_j_jobe_2022_104761 crossref_primary_10_1002_eqe_3595 crossref_primary_10_1016_j_jobe_2021_103839 crossref_primary_10_1061_JSENDH_STENG_12306 crossref_primary_10_1061_JSENDH_STENG_13516 crossref_primary_10_1016_j_jobe_2023_106429 crossref_primary_10_1016_j_jcsr_2024_109266 crossref_primary_10_1016_j_engstruct_2020_110506 crossref_primary_10_1088_1361_665X_abd5db crossref_primary_10_1016_j_jcsr_2024_108969 crossref_primary_10_1007_s10518_020_00851_x crossref_primary_10_1016_j_engstruct_2024_118474 crossref_primary_10_1016_j_engstruct_2025_120130 crossref_primary_10_1016_j_jcsr_2024_108968 crossref_primary_10_1016_j_istruc_2021_03_115 crossref_primary_10_1016_j_engstruct_2025_119945 crossref_primary_10_1016_j_engstruct_2018_11_002 crossref_primary_10_1016_j_engstruct_2021_112621 crossref_primary_10_3390_su16010427 crossref_primary_10_1016_j_engstruct_2020_110502 crossref_primary_10_1061__ASCE_ST_1943_541X_0003267 crossref_primary_10_3389_fbuil_2022_953273 crossref_primary_10_1080_13632469_2021_2009059 crossref_primary_10_1016_j_engstruct_2021_112191 crossref_primary_10_1016_j_engstruct_2020_110751 crossref_primary_10_3390_buildings13112760 crossref_primary_10_1016_j_jcsr_2021_106817 crossref_primary_10_1080_13632469_2021_2009060 crossref_primary_10_3390_su14020712 crossref_primary_10_1007_s11709_022_0873_6 crossref_primary_10_1016_j_engstruct_2020_111171 crossref_primary_10_1016_j_engstruct_2025_119809 crossref_primary_10_1080_13632469_2020_1856233 crossref_primary_10_1016_j_jobe_2021_103059 crossref_primary_10_1088_1361_665X_ab8f68 crossref_primary_10_1016_j_istruc_2024_107553 crossref_primary_10_1016_j_istruc_2024_107791 crossref_primary_10_1061_JSENDH_STENG_13414 crossref_primary_10_1016_j_jobe_2022_105753 crossref_primary_10_1016_j_jobe_2023_107056 crossref_primary_10_1061__ASCE_EM_1943_7889_0001699 crossref_primary_10_1016_j_engstruct_2025_120596 crossref_primary_10_3390_s19010050 crossref_primary_10_1016_j_engstruct_2025_120111 crossref_primary_10_1088_1755_1315_330_2_022050 crossref_primary_10_1016_j_engstruct_2020_111611 crossref_primary_10_1088_1361_665X_aab52d crossref_primary_10_1088_1361_665X_ab6abd crossref_primary_10_1177_1369433218773487 crossref_primary_10_1016_j_soildyn_2019_105751 crossref_primary_10_1061_JSENDH_STENG_13667 crossref_primary_10_1002_tal_1797 crossref_primary_10_1016_j_jcsr_2023_107950 crossref_primary_10_1080_13632469_2022_2152137 crossref_primary_10_1155_2023_9748991 crossref_primary_10_1016_j_engstruct_2025_120464 crossref_primary_10_1016_j_jobe_2024_109107 crossref_primary_10_1002_eqe_3953 crossref_primary_10_1007_s10518_017_0213_8 crossref_primary_10_1061__ASCE_ST_1943_541X_0003058 crossref_primary_10_1016_j_engstruct_2021_113407 crossref_primary_10_1016_j_mtcomm_2023_107723 crossref_primary_10_1016_j_engstruct_2022_115556 crossref_primary_10_1061__ASCE_ST_1943_541X_0002649 crossref_primary_10_1088_1361_665X_ac177e crossref_primary_10_1016_j_istruc_2023_105153 crossref_primary_10_1088_1361_665X_ab1974 crossref_primary_10_1080_15397734_2021_1939048 crossref_primary_10_1016_j_engstruct_2024_119471 crossref_primary_10_1016_j_jobe_2023_107671 crossref_primary_10_1177_1369433218791606 crossref_primary_10_1016_j_engstruct_2024_119000 crossref_primary_10_1002_eqe_3728 crossref_primary_10_1002_stc_2847 crossref_primary_10_1002_eqe_3726 crossref_primary_10_1061__ASCE_EM_1943_7889_0001838 crossref_primary_10_1016_j_istruc_2024_107968 crossref_primary_10_1016_j_engstruct_2017_10_075 crossref_primary_10_3390_ma15072349 crossref_primary_10_1016_j_engstruct_2018_10_013 crossref_primary_10_1016_j_jcsr_2022_107392 crossref_primary_10_1177_1045389X19844328 crossref_primary_10_1061__ASCE_ST_1943_541X_0002414 crossref_primary_10_1016_j_engstruct_2025_120205 crossref_primary_10_1088_1755_1315_455_1_012071 crossref_primary_10_1016_j_engstruct_2020_110836 crossref_primary_10_1016_j_jcsr_2021_106578 crossref_primary_10_1016_j_jobe_2024_109201 crossref_primary_10_1016_j_jobe_2021_103261 crossref_primary_10_1016_j_engstruct_2023_115728 crossref_primary_10_1061_AJRUA6_RUENG_1495 crossref_primary_10_1016_j_soildyn_2020_106546 crossref_primary_10_1061_JSENDH_STENG_13176 crossref_primary_10_1080_13632469_2022_2033354 crossref_primary_10_1016_j_engstruct_2018_12_077 crossref_primary_10_1080_30656680_2025_2559071 crossref_primary_10_1016_j_engstruct_2017_10_068 crossref_primary_10_1016_j_soildyn_2023_108291 crossref_primary_10_1016_j_tws_2025_113394 crossref_primary_10_1088_1361_665X_ad142a crossref_primary_10_1002_eqe_3820 crossref_primary_10_1016_j_jcsr_2023_108447 crossref_primary_10_1016_j_jobe_2021_103494 crossref_primary_10_3390_app10010284 crossref_primary_10_1016_j_istruc_2023_105028 crossref_primary_10_1016_j_engstruct_2021_112527 crossref_primary_10_1016_j_tws_2022_110351 crossref_primary_10_1016_j_engstruct_2020_111382 crossref_primary_10_1016_j_jcsr_2022_107172 crossref_primary_10_1061__ASCE_ST_1943_541X_0002515 crossref_primary_10_1061_JSENDH_STENG_13982 crossref_primary_10_3390_ma15010012 crossref_primary_10_1016_j_jcsr_2025_109456 crossref_primary_10_1016_j_tws_2025_113044 |
| Cites_doi | 10.1016/j.jcsr.2015.12.008 10.1002/1096-9845(200007)29:7<945::AID-EQE958>3.0.CO;2-# 10.1061/(ASCE)0733-9445(2007)133:9(1205) 10.1002/stc.328 10.1016/j.engstruct.2010.07.013 10.1177/1045389X11411220 10.12989/eas.2013.4.6.607 10.1016/S0141-0296(98)00097-2 10.1088/0964-1726/16/5/014 10.1016/j.conbuildmat.2014.08.065 10.1007/s11665-009-9433-7 10.1061/(ASCE)ST.1943-541X.0001109,04014163 10.1002/eqe.501 10.1002/eqe.243 10.1002/eqe.2241 10.1002/eqe.2160 10.1016/j.engstruct.2005.12.010 10.1016/j.engstruct.2006.11.028 10.1016/j.jcsr.2007.02.001 10.1002/tal.1149 10.1061/(ASCE)0733-9445(2008)134:1(121) 10.1061/(ASCE)0733-9445(2004)130:1(38) 10.1088/0964-1726/19/6/065004 10.1080/13632460601125763 10.1016/j.engstruct.2008.05.025 10.1061/(ASCE)0733-9399(2008)134:3(240) 10.1088/0964-1726/17/3/035018 10.1260/1369-4332.17.3.429 10.1061/(ASCE)0733-9445(2007)133:6(862) 10.1002/eqe.2290 10.1061/(ASCE)ST.1943-541X.0001005,04014083 10.1002/eqe.761 10.1016/j.engstruct.2012.02.037 10.1061/(ASCE)0733-9445(2001)127:2(113) 10.1002/eqe.152 10.1088/0964-1726/14/3/008 10.1002/eqe.683 10.1061/(ASCE)ST.1943-541X.0001166,04014193 10.1061/(ASCE)0733-9445(2002)128:9(1111) 10.1016/j.engstruct.2009.10.011 10.1088/0964-1726/17/2/025008 |
| ContentType | Journal Article |
| Copyright | Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2016 John Wiley & Sons, Ltd. – notice: Copyright © 2017 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI 7SM 8BQ JG9 |
| DOI | 10.1002/eqe.2777 |
| DatabaseName | CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Earthquake Engineering Abstracts METADEX Materials Research Database |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management Earthquake Engineering Abstracts Materials Research Database METADEX |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Civil Engineering Abstracts Earthquake Engineering Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1096-9845 |
| EndPage | 137 |
| ExternalDocumentID | 4277509801 10_1002_eqe_2777 EQE2777 |
| Genre | article |
| GrantInformation_xml | – fundername: Research Institute for Sustainable Urban Development of the Hong Kong Polytechnic University funderid: 4‐ZZCG – fundername: National Natural Science Foundation of China funderid: NSFC‐51208447 |
| GroupedDBID | .3N .GA 02 05W 08R 0R 10A 1L6 1OB 1OC 31 33P 3N 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6XO 702 7PT 8-0 8-1 8-3 8-4 8-5 8RP 8UM 8WZ 930 A03 A6W AABCJ AAESR AAEVG AAIKC AAONW AAYOK AAZKR ABCUV ABHUG ABPVW ACAHQ ACGFS ACIWK ACKIV ACPOU ACVYA ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADMGS ADOZA ADXAS ADZMN AEIMD AENEX AEUQT AFBPY AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CKXBT CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GA GNP GODZA H.T H.X HBH HHY HVGLF HZ IA IPNFZ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M58 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF NF~ NNB O66 O9- P2P P2W P2X P4A P4D PALCI Q.N Q11 QB0 QRW R.K RIG RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SPW SUPJJ TN5 TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WLBEL WOHZO WQJ WRC WT WWC WYISQ X XG1 XPP XV2 Y3 ZY4 ZZTAW ~IA ~WT -~X .DC .Y3 0R~ 31~ AAHQN AAMMB AAMNL AAMNW AANHP AANLZ AASGY AAXRX AAYCA AAYXX ABCQN ABEML ABIJN ABJNI ACBWZ ACCZN ACRPL ACSCC ACXBN ACYXJ ADKYN ADNMO AEFGJ AEIGN AEUYR AEYWJ AFFPM AFWVQ AGHNM AGQPQ AGXDD AGYGG AHBTC AI. AIDQK AIDYY AIQQE AITYG ALVPJ CITATION HF~ HGLYW HZ~ O8X OIG WXSBR ~02 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI 7SM 8BQ JG9 |
| ID | FETCH-LOGICAL-c3597-d1bfce65afb2b8376155ef9599b663c9f3f09eed4e33cbe8ed894a57b51ac74c3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 310 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000390260700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-8847 |
| IngestDate | Thu Oct 02 05:12:18 EDT 2025 Tue Oct 07 09:36:45 EDT 2025 Sun Nov 09 06:14:44 EST 2025 Tue Nov 18 20:47:46 EST 2025 Sat Nov 29 03:40:48 EST 2025 Fri Apr 02 05:00:57 EDT 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3597-d1bfce65afb2b8376155ef9599b663c9f3f09eed4e33cbe8ed894a57b51ac74c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2617-3378 |
| PQID | 1848483248 |
| PQPubID | 866380 |
| PageCount | 21 |
| ParticipantIDs | proquest_miscellaneous_1864562878 proquest_miscellaneous_1855072567 proquest_journals_1848483248 crossref_primary_10_1002_eqe_2777 crossref_citationtrail_10_1002_eqe_2777 wiley_primary_10_1002_eqe_2777_EQE2777 |
| ProviderPackageCode | 10A RJQFR A03 ADOZA BFHJK BROTX AMBMR DCZOG ~IA ACAHQ LEEKS AFGKR 50Y 50Z AEUQT XG1 AAEVG MRSTM .3N MEWTI H.T Q11 LP7 H.X LP6 51W 51X ACXME WBKPD QB0 AJXKR ADMGS UB1 AEIMD GNP ATUGU WOHZO G-S O66 AZBYB 52M 3WU 52N 52O 52P ADEOM LATKE ZZTAW 52S 930 BAFTC 52T MK4 QRW SUPJJ 52U HHY 52W DRSTM 1L6 52X AFPWT 4ZD ALAGY WWC DR2 G.N ACPOU AFZJQ ADAWD 702 7PT 66C NNB ADIZJ .GA AAONW LYRES GODZA HBH LUTES ALUQN CKXBT AAZKR MSFUL WLBEL LC2 AIURR LC3 AZVAB RWI PALCI ABHUG KQQ RX1 ACXQS BMXJE R.K WIB WQJ MXFUL P2W W8V W99 WYISQ P2X WIH WIK JPC BDRZF BY8 MSSTM DPXWK 1OB AUFTA 1OC 3SF F01 F00 NF~ BRXPI WRC AFVGU F04 ADZMN 8UM ABCUV N05 N04 ADDAD BNHUX ~WT 8-0 8-1 P4A 8-3 AGJLS 8-4 8-5 P4D IX1 BHBCM BMNLL LITHE SAMSI J0M MXSTM DRFUL 33P Q.N 05W XV2 AAESR LOXES MRFUL D-F D-E |
| PublicationCentury | 2000 |
| PublicationDate | January 2017 2017-01-00 20170101 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | Earthquake engineering & structural dynamics |
| PublicationYear | 2017 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2010; 32 2000; 29 2013; 4 2002; 31 2010; 19 2010 2000; 22 2013; 42 2008; 17 2008 2008; 37 1997 2008; 30 2007; 11 2014; 23 2003; 32 2007; 36 2001; 127 2007; 16 2007; 29 2001 2016; 119 2004; 130 2007; 133 2006; 28 2002; 128 2011; 22 2014; 140 2014; 17 2007; 63 2008; 134 2014; 72 2014; 141 2009; 16 2005; 34 2012; 41 2009; 18 2005; 14 2012; 40 Padgett JE (e_1_2_11_23_1) 2010; 32 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_48_1 e_1_2_11_2_1 American Society of Civil Engineers (ASCE) (e_1_2_11_3_1) 2010 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_46_1 e_1_2_11_47_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_42_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 DesRoches R (e_1_2_11_9_1) 2004; 130 e_1_2_11_15_1 e_1_2_11_37_1 e_1_2_11_38_1 e_1_2_11_39_1 e_1_2_11_19_1 |
| References_xml | – volume: 119 start-page: 133 year: 2016 end-page: 143 article-title: High‐mode effects on seismic performance of a multi‐story self‐centering‐braced steel frame publication-title: Journal of Constructional Steel Research – volume: 30 start-page: 3399 year: 2008 end-page: 3411 article-title: Analytical prediction of the seismic behavior of superelastic shape memory alloy reinforced concrete elements publication-title: Engineering Structures – volume: 32 start-page: 165 issue: 3 year: 2010 end-page: 173 article-title: Experimental response modification of a four‐span bridge retrofit with shape memory alloys publication-title: Structural Control and Health Monitoring – volume: 141 issue: 6 year: 2014 article-title: Design and testing of an enhanced‐elongation telescoping self‐centering energy‐dissipative brace publication-title: ASCE Journal of Structural Engineering – volume: 128 start-page: 1111 issue: 9 year: 2002 end-page: 1120 article-title: Post‐tensioned energy dissipating connections for moment resisting steel frames publication-title: ASCE Journal of Structural Engineering – volume: 16 start-page: 751 issue: 7–8 year: 2009 end-page: 765 article-title: A passive control device with SMA components: from the prototype to the model publication-title: Structural Control and Health Monitoring – volume: 41 start-page: 1831 issue: 13 year: 2012 end-page: 1843 article-title: Application of an SMA‐based hybrid control device to 20‐story nonlinear benchmark building publication-title: Earthquake Engineering and Structural Dynamics – volume: 14 start-page: 60 issue: 3 year: 2005 end-page: 67 article-title: Unseating prevention for multiple frame bridges using superelastic devices publication-title: Smart Materials and Structures – volume: 32 start-page: 3394 issue: 10 year: 2010 end-page: 3403 article-title: Hysteretic behavior of precast segmental bridge piers with superelastic shape memory alloy bars publication-title: Engineering Structures – volume: 37 start-page: 407 year: 2008 end-page: 426 article-title: Experimental and theoretical study on two types of shape memory alloy devices publication-title: Earthquake Engineering and Structural Dynamics – volume: 72 start-page: 219 issue: 15 year: 2014 end-page: 230 article-title: Characterization of cyclic properties of superelastic monocrystalline Cu–Al–Be SMA wires for seismic applications publication-title: Construction and Building Material – volume: 134 start-page: 121 issue: 1 year: 2008 end-page: 131 article-title: Seismic analysis of concentrically braced frame systems with self‐centering friction damping braces publication-title: ASCE Journal of Structural Engineering – year: 2001 – volume: 42 start-page: 1617 issue: 11 year: 2013 end-page: 1635 article-title: Shake table testing and numerical simulation of a self‐centering energy dissipative braced frame publication-title: Earthquake Engineering and Structural Dynamics – volume: 28 start-page: 1266 issue: 9 year: 2006 end-page: 1274 article-title: Applications of shape memory alloys in civil structures publication-title: Engineering Structures – volume: 141 issue: 8 year: 2014 article-title: Design, testing and detailed component modeling of a high‐capacity self‐centering energy‐dissipative brace publication-title: ASCE Journal of Structural Engineering – volume: 29 start-page: 2294 year: 2007 end-page: 2301 article-title: Effect of ambient temperature on the hinge opening in bridges with shape memory alloy seismic restrainers publication-title: Engineering Structures – volume: 63 start-page: 1570 issue: 12 year: 2007 end-page: 1579 article-title: Implementation of shape memory alloy dampers for passive control of structures subjected to seismic excitations publication-title: Journal of Constructional Steel Research – volume: 22 start-page: 222 issue: 3 year: 2000 end-page: 229 article-title: Base isolation system with shape memory alloy device for elevated highway bridges publication-title: Engineering Structures – volume: 130 start-page: 38 issue: 1 year: 2004 end-page: 46 article-title: Cyclic properties of superelastic shape memory alloy wires and bars publication-title: ASCE Journal of Structural Engineering – volume: 36 start-page: 1329 issue: 10 year: 2007 end-page: 1346 article-title: Seismic behavior of self‐centering braced frame buildings with reusable hysteretic damping brace publication-title: Earthquake Engineering and Structural Dynamics – volume: 19 issue: 6 year: 2010 article-title: GA‐based optimum design of a shape memory alloy device for seismic response mitigation publication-title: Smart Materials and Structures – volume: 127 start-page: 113 issue: 2 year: 2001 end-page: 121 article-title: Post‐tensioned seismic resistant connections for steel frames publication-title: ASCE Journal of Structural Engineering – volume: 133 start-page: 862 issue: 6 year: 2007 end-page: 870 article-title: Seismic assessment of concentrically braced frames with shape memory alloy braces publication-title: ASCE Journal of Structural Engineering – volume: 23 start-page: 1406 issue: 18 year: 2014 end-page: 1425 article-title: Incremental dynamic analysis of steel frames equipped with NiTi shape memory alloy braces publication-title: The Structural Design of Tall and Special Buildings – volume: 11 start-page: 326 issue: 3 year: 2007 end-page: 342 article-title: Effect of SMA braces in a steel frame building publication-title: Journal of Earthquake Engineering – volume: 40 start-page: 288 year: 2012 end-page: 298 article-title: Development and experimental validation of a nickel–titanium shape memory alloy self‐centering buckling‐restrained brace publication-title: Engineering Structures – year: 2010 – volume: 4 start-page: 607 issue: 6 year: 2013 end-page: 627 article-title: Loading rate effect on superelastic SMA‐based seismic response modification devices publication-title: Earthquakes and Structures – volume: 16 start-page: 1603 issue: 5 year: 2007 article-title: A shape memory alloy‐based reusable hysteretic damper for seismic hazard mitigation publication-title: Smart Materials and Structures – volume: 17 start-page: 1 issue: 3 year: 2008 end-page: 10 article-title: Large scale testing of nitinol shape memory alloy devices for retrofitting of bridges publication-title: Smart Materials and Structures – volume: 17 issue: 2 year: 2008 article-title: Experimental characterization of mechanical properties of copper‐based superelastic alloy at cold temperatures for the seismic protection of bridges publication-title: Smart Materials and Structures – volume: 22 start-page: 1531 issue: 14 year: 2011 end-page: 1549 article-title: Seismic response control using shape memory alloys, a review publication-title: Journal of Intelligent Material Systems and Structures – volume: 31 start-page: 1131 year: 2002 end-page: 1150 article-title: Seismic response of self‐centering hysteretic SDOF systems publication-title: Earthquake Engineering and Structural Dynamics – volume: 134 start-page: 240 issue: 3 year: 2008 end-page: 251 article-title: Seismic response control of building structures with superelastic shape memory alloy wire dampers publication-title: ASCE Journal of Engineering Mechanics – year: 2008 – volume: 32 start-page: 498 year: 2010 end-page: 507 article-title: Design and analysis of braced frames with shape memory alloy and energy‐absorbing hybrid devices publication-title: Engineering Structures – year: 1997 – volume: 140 issue: 11 year: 2014 article-title: Quasi‐static cyclic behavior of controlled rocking steel frames publication-title: ASCE Journal of Structural Engineering – volume: 42 start-page: 725 year: 2013 end-page: 741 article-title: Effectiveness of superelastic bars for seismic rehabilitation of clay‐unit masonry walls publication-title: Earthquake Engineering and Structural Dynamics – volume: 29 start-page: 945 year: 2000 end-page: 968 article-title: Implementation and testing of passive control devices based on shape memory alloys publication-title: Earthquake Engineering and Structural Dynamics – volume: 17 start-page: 429 issue: 3 year: 2014 end-page: 438 article-title: Incremental dynamic analysis of highway bridges with novel shape memory alloy isolators publication-title: Advances in Structural Engineering – volume: 34 start-page: 1687 issue: 14 year: 2005 end-page: 1717 article-title: Shaking table tests on reinforced concrete frames without and with passive control systems publication-title: Earthquake Engineering and Structural Dynamics – volume: 18 start-page: 746 year: 2009 end-page: 753 article-title: Shape memory alloy compression/tension devices for seismic retrofit of buildings publication-title: Journal of Materials Engineering and Performance – volume: 32 start-page: 483 year: 2003 end-page: 494 article-title: Structural vibration control by shape memory alloy damper publication-title: Earthquake Engineering and Structural Dynamics – volume: 133 start-page: 1205 issue: 9 year: 2007 end-page: 1214 article-title: Experimental evaluation of a large‐scale buckling‐restrained braced frame publication-title: ASCE Journal of Structural Engineering – ident: e_1_2_11_34_1 doi: 10.1016/j.jcsr.2015.12.008 – ident: e_1_2_11_11_1 doi: 10.1002/1096-9845(200007)29:7<945::AID-EQE958>3.0.CO;2-# – volume-title: Minimum Design Loads for Buildings and Other Structures, ANSI/SEI7‐10 year: 2010 ident: e_1_2_11_3_1 – ident: e_1_2_11_42_1 doi: 10.1061/(ASCE)0733-9445(2007)133:9(1205) – volume: 32 start-page: 165 issue: 3 year: 2010 ident: e_1_2_11_23_1 article-title: Experimental response modification of a four‐span bridge retrofit with shape memory alloys publication-title: Structural Control and Health Monitoring – ident: e_1_2_11_44_1 – ident: e_1_2_11_2_1 – ident: e_1_2_11_22_1 doi: 10.1002/stc.328 – ident: e_1_2_11_24_1 doi: 10.1016/j.engstruct.2010.07.013 – ident: e_1_2_11_40_1 doi: 10.1177/1045389X11411220 – ident: e_1_2_11_41_1 doi: 10.12989/eas.2013.4.6.607 – ident: e_1_2_11_12_1 doi: 10.1016/S0141-0296(98)00097-2 – ident: e_1_2_11_16_1 doi: 10.1088/0964-1726/16/5/014 – ident: e_1_2_11_10_1 doi: 10.1016/j.conbuildmat.2014.08.065 – ident: e_1_2_11_35_1 doi: 10.1007/s11665-009-9433-7 – ident: e_1_2_11_43_1 doi: 10.1061/(ASCE)ST.1943-541X.0001109,04014163 – ident: e_1_2_11_28_1 doi: 10.1002/eqe.501 – ident: e_1_2_11_47_1 – ident: e_1_2_11_13_1 doi: 10.1002/eqe.243 – ident: e_1_2_11_25_1 doi: 10.1002/eqe.2241 – ident: e_1_2_11_27_1 doi: 10.1002/eqe.2160 – ident: e_1_2_11_39_1 doi: 10.1016/j.engstruct.2005.12.010 – ident: e_1_2_11_15_1 doi: 10.1016/j.engstruct.2006.11.028 – ident: e_1_2_11_31_1 doi: 10.1016/j.jcsr.2007.02.001 – ident: e_1_2_11_33_1 doi: 10.1002/tal.1149 – ident: e_1_2_11_29_1 doi: 10.1061/(ASCE)0733-9445(2008)134:1(121) – volume: 130 start-page: 38 issue: 1 year: 2004 ident: e_1_2_11_9_1 article-title: Cyclic properties of superelastic shape memory alloy wires and bars publication-title: ASCE Journal of Structural Engineering doi: 10.1061/(ASCE)0733-9445(2004)130:1(38) – ident: e_1_2_11_38_1 doi: 10.1088/0964-1726/19/6/065004 – ident: e_1_2_11_37_1 doi: 10.1080/13632460601125763 – ident: e_1_2_11_21_1 doi: 10.1016/j.engstruct.2008.05.025 – ident: e_1_2_11_18_1 doi: 10.1061/(ASCE)0733-9399(2008)134:3(240) – ident: e_1_2_11_19_1 doi: 10.1088/0964-1726/17/3/035018 – ident: e_1_2_11_45_1 – ident: e_1_2_11_26_1 doi: 10.1260/1369-4332.17.3.429 – ident: e_1_2_11_30_1 doi: 10.1061/(ASCE)0733-9445(2007)133:6(862) – ident: e_1_2_11_7_1 doi: 10.1002/eqe.2290 – ident: e_1_2_11_8_1 doi: 10.1061/(ASCE)ST.1943-541X.0001005,04014083 – ident: e_1_2_11_20_1 doi: 10.1002/eqe.761 – ident: e_1_2_11_36_1 doi: 10.1016/j.engstruct.2012.02.037 – ident: e_1_2_11_4_1 doi: 10.1061/(ASCE)0733-9445(2001)127:2(113) – ident: e_1_2_11_6_1 doi: 10.1002/eqe.152 – ident: e_1_2_11_14_1 doi: 10.1088/0964-1726/14/3/008 – ident: e_1_2_11_17_1 doi: 10.1002/eqe.683 – ident: e_1_2_11_46_1 doi: 10.1061/(ASCE)ST.1943-541X.0001166,04014193 – ident: e_1_2_11_5_1 doi: 10.1061/(ASCE)0733-9445(2002)128:9(1111) – ident: e_1_2_11_32_1 doi: 10.1016/j.engstruct.2009.10.011 – ident: e_1_2_11_48_1 doi: 10.1088/0964-1726/17/2/025008 |
| SSID | ssj0003607 |
| Score | 2.6094706 |
| Snippet | Summary
Given their excellent self‐centering and energy‐dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural... Given their excellent self‐centering and energy‐dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural material in the... Summary Given their excellent self-centering and energy-dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural... Given their excellent self-centering and energy-dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural material in the... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 117 |
| SubjectTerms | Earthquake damage Earthquake engineering earthquake resilience Earthquake resistance Intermetallic compounds numerical simulation Reinforcement (structures) Seismic phenomena self‐centering shake table test shape memory alloy brace Shape memory alloys steel braced frame Steel frames Superelasticity |
| Title | Shake table test and numerical study of self‐centering steel frame with SMA braces |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002/eqe.2777 https://www.proquest.com/docview/1848483248 https://www.proquest.com/docview/1855072567 https://www.proquest.com/docview/1864562878 |
| Volume | 46 |
| WOSCitedRecordID | wos000390260700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1096-9845 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003607 issn: 0098-8847 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwED5BYYCBf8RPQUZCMBVaJ6njsYJWDFABBcQW2Y4tEFUKtGXmEXhGnoS7JA1FAoRQhgw-W5btu_vOZ38G2K2GcSBqmm7jKAxQlLAVGVCwwp1xcYABQcrTfXMq2u3w9laeT0A4uguT8UMUG26kGam9JgVXup_n9fmhfbIHXAgxCVMcF61fgqnjy9b1aWGFvXq14MsM0QSPiGfH6n51RZ_4chylpm6mNf__Di7AXA4tWSNbC4swYZMlmB0jHFyGq86derBsQPelGILMAVNJzJJhlrbpspRslvUc69uue399o6ObaVUssbbLHB3lYrR3yzpnDYa9QzOzAtet5tXRSSV_V6FiPIwfKnFNO2PrgXKaawxQKTVpnQyk1Ig_jHSeq0r0nb71PKNtaONQ-ioQOqgpI3zjrUIp6SV2DZhCuBIbw41ENy_qVY1oUmGUScjNl4qvw_5oiCOTk47T2xfdKKNL5hGOU0TjtA47heRjRrTxjUx5NEtRrmr9CENU_BAXhthEUYxKQpkPldjekGSItg3RnfhNpk7RYCiwnb10Xn_sR9S8aNJ_46-CmzDDCQ6kWzdlKA2eh3YLps3L4L7_vJ0v3Q8-4PJX |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shake+table+test+and+numerical+study+of+self-centering+steel+frame+with+SMA+braces&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Qiu%2C+Canxing&rft.au=Zhu%2C+Songye&rft.date=2017-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=46&rft.issue=1&rft.spage=117&rft_id=info:doi/10.1002%2Feqe.2777&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4277509801 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon |