Computing low‐rank approximations of the Fréchet derivative of a matrix function using Krylov subspace methods

The Fréchet derivative Lf(A,E) of the matrix function f(A) plays an important role in many different applications, including condition number estimation and network analysis. We present several different Krylov subspace methods for computing low‐rank approximations of Lf(A,E) when the direction term...

Full description

Saved in:
Bibliographic Details
Published in:Numerical linear algebra with applications Vol. 28; no. 6
Main Authors: Kandolf, Peter, Koskela, Antti, Relton, Samuel D., Schweitzer, Marcel
Format: Journal Article
Language:English
Published: Oxford Wiley Subscription Services, Inc 01.12.2021
Subjects:
ISSN:1070-5325, 1099-1506
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The Fréchet derivative Lf(A,E) of the matrix function f(A) plays an important role in many different applications, including condition number estimation and network analysis. We present several different Krylov subspace methods for computing low‐rank approximations of Lf(A,E) when the direction term E is of rank one (which can easily be extended to general low rank). We analyze the convergence of the resulting methods both in the Hermitian and non‐Hermitian case. In a number of numerical tests, both including matrices from benchmark collections and from real‐world applications, we demonstrate and compare the accuracy and efficiency of the proposed methods.
AbstractList The Fréchet derivative Lf(A,E) of the matrix function f(A) plays an important role in many different applications, including condition number estimation and network analysis. We present several different Krylov subspace methods for computing low‐rank approximations of Lf(A,E) when the direction term E is of rank one (which can easily be extended to general low rank). We analyze the convergence of the resulting methods both in the Hermitian and non‐Hermitian case. In a number of numerical tests, both including matrices from benchmark collections and from real‐world applications, we demonstrate and compare the accuracy and efficiency of the proposed methods.
The Fréchet derivative of the matrix function plays an important role in many different applications, including condition number estimation and network analysis. We present several different Krylov subspace methods for computing low‐rank approximations of when the direction term is of rank one (which can easily be extended to general low rank). We analyze the convergence of the resulting methods both in the Hermitian and non‐Hermitian case. In a number of numerical tests, both including matrices from benchmark collections and from real‐world applications, we demonstrate and compare the accuracy and efficiency of the proposed methods.
Author Schweitzer, Marcel
Kandolf, Peter
Koskela, Antti
Relton, Samuel D.
Author_xml – sequence: 1
  givenname: Peter
  surname: Kandolf
  fullname: Kandolf, Peter
  organization: Universität Innsbruck
– sequence: 2
  givenname: Antti
  surname: Koskela
  fullname: Koskela, Antti
  organization: University of Helsinki
– sequence: 3
  givenname: Samuel D.
  surname: Relton
  fullname: Relton, Samuel D.
  organization: The University of Leeds
– sequence: 4
  givenname: Marcel
  orcidid: 0000-0002-4937-2855
  surname: Schweitzer
  fullname: Schweitzer, Marcel
  email: marcel.schweitzer@hhu.de
  organization: Heinrich‐Heine‐Universität Düsseldorf
BookMark eNp1kE1OwzAQhS1UJNqCxBEssWGT4p8mjZdVRQFRwQbWkWNPaEoap7bTnx1H4Bqcg5twEpKWFYLVjDTfe6P3eqhTmhIQOqdkQAlhV2UhB2xI6BHqUiJEQEMSddp9RIKQs_AE9ZxbEEKiUPAuWk3Msqp9Xr7gwmy-3t6tLF-xrCprtvlS-tyUDpsM-zngqf38UHPwWIPN181tDe1J4oaz-RZndalaAa5d63dvd4VZY1enrpIK8BL83Gh3io4zWTg4-5l99Dy9fprcBrPHm7vJeBYoHgoaaB4NUxkDS9UQmKYii9NIhYymSlEgksQyVhq0YkKPYqrSWMsMuOCgNSGC8j66OPg2UVY1OJ8sTG3L5mXCQkFiwVnEG2pwoJQ1zlnIEpX7fWxvZV4klCRtrUlTa9LW2ggufwkq2xRld3-hwQHd5AXs_uWSh9l4z38DcCeNHw
CitedBy_id crossref_primary_10_1137_23M1580589
crossref_primary_10_1002_nla_2538
crossref_primary_10_1016_j_apnum_2021_10_005
crossref_primary_10_1007_s10851_022_01132_9
crossref_primary_10_1007_s11075_024_01881_1
crossref_primary_10_1016_j_jmapro_2023_07_061
crossref_primary_10_1137_23M1556708
crossref_primary_10_1007_s10092_023_00527_3
crossref_primary_10_1016_j_laa_2022_10_005
crossref_primary_10_1137_22M1543689
crossref_primary_10_1002_nla_70033
Cites_doi 10.1137/110847007
10.1137/1.9780898718003
10.1007/978-1-4613-9353-5_10
10.1002/gamm.201310002
10.1016/j.fusengdes.2017.08.022
10.1002/nla.652
10.6028/jres.045.026
10.1137/19M1245505
10.1137/20M1331718
10.1137/S1064827596313310
10.1017/S0962492910000048
10.1016/j.cpc.2007.07.012
10.1080/00207160.2013.765560
10.1016/j.physa.2008.11.011
10.1016/0024-3795(84)90221-0
10.1137/S1064827595295337
10.1016/j.pnucene.2018.04.020
10.1137/140973463
10.1137/070699378
10.1137/17M1140108
10.1137/0914009
10.1137/15M1053645
10.1016/j.laa.2010.08.042
10.2307/2007796
10.6028/jres.049.044
10.1023/A:1026000105893
10.1007/978-3-030-04088-8_6
10.1137/S0036142995280572
10.1137/S0895479895283409
10.1016/j.fusengdes.2018.02.092
10.1007/978-3-030-04088-8_10
10.1137/1.9780898717778
10.1016/S0010-4655(02)00455-1
10.1007/s00211-011-0366-3
10.21914/anziamj.v45i0.904
10.1137/0729014
10.1007/s11075-016-0239-z
10.1137/080741744
10.1109/TSIPN.2017.2731164
10.1137/06066120X
10.1515/9780691213101
10.1137/130912839
10.1090/S0025-5718-1979-0521282-9
10.1137/040608088
10.1137/S0895479895292400
10.1137/090761070
10.1137/100788860
10.1137/16M1077969
10.1007/s10543-013-0420-x
10.13182/NSE15-23
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd.
2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nla.2401
DatabaseName Wiley Online Library Open Access
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1099-1506
EndPage n/a
ExternalDocumentID 10_1002_nla_2401
NLA2401
Genre article
GrantInformation_xml – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  funderid: 156215
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWS
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3591-d364ba8e2bc4e2d19f8b6c521bcc1e0a08a8cdedc29d781cb8dafe393edd00913
IEDL.DBID 24P
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000661288800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1070-5325
IngestDate Fri Jul 25 12:11:48 EDT 2025
Sat Nov 29 05:31:59 EST 2025
Tue Nov 18 22:17:21 EST 2025
Wed Jan 22 16:28:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3591-d364ba8e2bc4e2d19f8b6c521bcc1e0a08a8cdedc29d781cb8dafe393edd00913
Notes Funding information
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, 156215
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4937-2855
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnla.2401
PQID 2590893263
PQPubID 2034341
PageCount 31
ParticipantIDs proquest_journals_2590893263
crossref_citationtrail_10_1002_nla_2401
crossref_primary_10_1002_nla_2401
wiley_primary_10_1002_nla_2401_NLA2401
PublicationCentury 2000
PublicationDate December 2021
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Numerical linear algebra with applications
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 434
2009; 47
2017; 3
2011; 118
2017; 47
2010; 17
2018; 129
1979; 33
2016; 38
1994; 60
2007; 29
2018; 39
1998; 19
1984; 58
2017; 39
2002; 146
2006; 27
2007; 177
2017; 76
2013; 53
2017; 122
2010; 4
2003; 43
1950; 45
2014; 91
1996; 17
2021; 42
2020; 41
2018; 107
2004; 45
2008
2011; 33
1999; 20
2005
2012; 39
2003
2002
1985; 44
2012; 34
2016; 58
2002; 27
1993; 14
2013; 36
1952; 49
2020
1997; 34
2019
1992; 29
2018
2009; 388
2014; 35
2016
2015
2010; 52
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_57_1
e_1_2_11_36_1
Jeuris B (e_1_2_11_7_1) 2012; 39
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
Alzer H (e_1_2_11_51_1) 2002; 27
e_1_2_11_60_1
Schmelzer T (e_1_2_11_54_1) 2007; 29
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_58_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_61_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
Frommer A (e_1_2_11_30_1) 2017; 47
References_xml – volume: 44
  start-page: 105
  year: 1985
  end-page: 24
  article-title: A look‐ahead Lanczos algorithm for unsymmetric matrices
  publication-title: Math Comput
– volume: 91
  start-page: 209
  issue: 2
  year: 2014
  end-page: 20
  article-title: Computing survival functions of the sum of two independent Markov processes: an application to bladder carcinoma treatment
  publication-title: Int J Comput Math
– year: 2005
– volume: 29
  start-page: 1268
  issue: 3
  year: 2007
  end-page: 88
  article-title: A new iterative method for solving large‐scale Lyapunov matrix equations
  publication-title: SIAM J Sci Comput
– volume: 47
  start-page: 828
  issue: 2
  year: 2009
  end-page: 43
  article-title: Convergence analysis of projection methods for the numerical solution of large Lyapunov equations
  publication-title: SIAM J Numer Anal
– volume: 58
  start-page: 391
  year: 1984
  end-page: 405
  article-title: Rational Krylov sequence methods for eigenvalue computation
  publication-title: Linear Algebra Appl
– volume: 34
  start-page: A2145
  issue: 4
  year: 2012
  end-page: 72
  article-title: An efficient implicit FEM scheme for fractional‐in‐space reaction–diffusion equations
  publication-title: SIAM J Sci Comput
– volume: 35
  start-page: 1602
  issue: 4
  year: 2014
  end-page: 24
  article-title: Convergence of restarted Krylov subspace methods for Stieltjes functions of matrices
  publication-title: SIAM J Matrix Anal Appl
– volume: 107
  start-page: 128
  year: 2018
  end-page: 35
  article-title: Development and verification of the activation analysis code AMY
  publication-title: Prog Nucl Energy
– volume: 14
  start-page: 137
  issue: 1
  year: 1993
  end-page: 58
  article-title: An implementation of the look‐ahead Lanczos algorithm for non‐hermitian matrices
  publication-title: SIAM J Sci Comput
– year: 2018
– year: 2016
  article-title: Ranking the importance of nuclear reactions for activation and transmutation events
  publication-title: Nucl Sci Eng
– start-page: 107
  year: 2019
  end-page: 28
– volume: 76
  start-page: 1
  issue: 1
  year: 2017
  end-page: 31
  article-title: A two‐sided short‐recurrence extended Krylov subspace method for nonsymmetric matrices and its relation to rational moment matching
  publication-title: Numer Algorithms
– volume: 129
  start-page: 196
  year: 2018
  end-page: 201
  article-title: ACTYS‐ASG, tool for coupling ACTYS‐1‐GO with ATTILA
  publication-title: Fusion Eng Design
– volume: 58
  start-page: 377
  issue: 3
  year: 2016
  end-page: 441
  article-title: Computational methods for linear matrix equations
  publication-title: SIAM Rev
– volume: 38
  start-page: C584
  issue: 5
  year: 2016
  end-page: 601
  article-title: Estimating the largest elements of a matrix
  publication-title: SIAM J Sci Comput
– volume: 177
  start-page: 933
  issue: 12
  year: 2007
  end-page: 43
  article-title: An iterative method to compute the sign function of a non‐Hermitian matrix and its application to the overlap Dirac operator at nonzero chemical potential
  publication-title: Comput Phys Commun
– volume: 60
  start-page: 149
  year: 1994
  end-page: 64
  article-title: Rational Krylov algorithms for nonsymmetric eigenvalue problems
  publication-title: IMA Vol Math Appl
– volume: 49
  start-page: 409
  year: 1952
  end-page: 36
  article-title: Methods of conjugate gradients for solving linear systems
  publication-title: J Res Natl Bur Stand
– volume: 39
  start-page: A1416
  issue: 4
  year: 2017
  end-page: 34
  article-title: A block Krylov method to compute the action of the Fréchet derivative of a matrix function on a vector with applications to condition number estimation
  publication-title: SIAM J Sci Comput
– volume: 45
  start-page: C504
  issue: E
  year: 2004
  end-page: 18
  article-title: Bayesian computations and efficient algorithms for computing functions of large, sparse matrices
  publication-title: ANZIAM J
– volume: 17
  start-page: 610
  issue: 3
  year: 1996
  end-page: 20
  article-title: A chain rule for matrix functions and applications
  publication-title: SIAM J Matrix Anal Appl
– volume: 36
  start-page: 8
  issue: 1
  year: 2013
  end-page: 31
  article-title: Rational Krylov approximation of matrix functions: numerical methods and optimal pole selection
  publication-title: GAMM‐Mitteilungen
– year: 2008
– volume: 39
  start-page: 379
  year: 2012
  end-page: 402
  article-title: A survey and comparison of contemporary algorithms for computing the matrix geometric mean
  publication-title: Electron Trans Numer Anal
– volume: 29
  start-page: 1
  year: 2007
  end-page: 18
  article-title: Evaluating matrix functions for exponential integrators via Carathéodory–Fejér approximation and contour integrals
  publication-title: Electron Trans Numer Anal
– volume: 27
  start-page: 1608
  issue: 5
  year: 2006
  end-page: 26
  article-title: On improving linear solver performance: a block variant of GMRES
  publication-title: SIAM J Sci Comput
– volume: 47
  start-page: 3849
  year: 2009
  end-page: 83
  article-title: Error estimation and evaluation of matrix functions via the Faber transform
  publication-title: SIAM J Numer Anal
– volume: 434
  start-page: 1716
  year: 2011
  end-page: 32
  article-title: Recursion relations for the extended Krylov subspace method
  publication-title: Linear Algebra Appl
– volume: 47
  start-page: 100
  year: 2017
  end-page: 26
  article-title: Block Krylov subspace methods for functions of matrices
  publication-title: Electron Trans Numer Anal
– year: 2015
– volume: 3
  start-page: 484
  issue: 3
  year: 2017
  end-page: 99
  article-title: Learning heat diffusion graphs
  publication-title: IEEE Trans Signal Inform Process Netw
– volume: 29
  start-page: 209
  issue: 1
  year: 1992
  end-page: 28
  article-title: Analysis of some Krylov subspace approximations to the exponential operator
  publication-title: SIAM J Numer Anal
– volume: 42
  start-page: 202
  issue: 1
  year: 2021
  end-page: 23
  article-title: Norm and trace estimation with random rank‐one vectors
  publication-title: SIAM J Matrix Anal Appl
– volume: 43
  start-page: 459
  issue: 2
  year: 2003
  end-page: 66
  article-title: Restarted full orthogonalization method for shifted linear systems
  publication-title: BIT
– volume: 53
  start-page: 595
  issue: 3
  year: 2013
  end-page: 616
  article-title: A black‐box rational Arnoldi variant for Cauchy–Stieltjes matrix functions
  publication-title: BIT
– volume: 19
  start-page: 775
  year: 1998
  end-page: 1
  article-title: Extended Krylov subspaces: approximation of the matrix square root and related functions
  publication-title: SIAM J Matrix Anal Appl
– volume: 52
  start-page: 696
  issue: 4
  year: 2010
  end-page: 714
  article-title: Network properties revealed through matrix functions
  publication-title: SIAM Rev
– year: 2003
– start-page: 197
  year: 2019
  end-page: 214
– volume: 20
  start-page: 1831
  issue: 5
  year: 1999
  end-page: 50
  article-title: Fast CG‐based methods for Tikhonov–Phillips regularization
  publication-title: SIAM J Sci Comput
– volume: 19
  start-page: 1552
  issue: 5
  year: 1998
  end-page: 74
  article-title: Exponential integrators for large systems of differential equations
  publication-title: SIAM J Sci Comput
– volume: 41
  start-page: 365
  issue: 2
  year: 2020
  end-page: 88
  article-title: The block rational Arnoldi method
  publication-title: SIAM J Matrix Anal Appl
– volume: 4
  start-page: 209
  issue: 19
  year: 2010
  end-page: 86
  article-title: Exponential integrators
  publication-title: Acta Numer
– volume: 45
  start-page: 255
  year: 1950
  end-page: 82
  article-title: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators
  publication-title: J Res Natl Bur Stand
– volume: 33
  start-page: 680
  issue: 146
  year: 1979
  end-page: 7
  article-title: Implementation aspects of band Lanczos algorithms for computation of eigenvalues of large sparse symmetric matrices
  publication-title: Math Comput
– volume: 122
  start-page: 154
  year: 2017
  end-page: 62
  article-title: ACTYS‐1‐GO: a faster and accurate algorithm for multipoint nuclear activation calculations
  publication-title: Fusion Eng Design
– volume: 118
  start-page: 567
  year: 2011
  end-page: 86
  article-title: Convergence analysis of the extended Krylov subspace method for the Lyapunov equation
  publication-title: Numer Math
– volume: 33
  issue: 2
  year: 2011
  article-title: Computing the action of the matrix exponential with an application to exponential integrators
  publication-title: SIAM J Sci Comput
– volume: 17
  start-page: 615
  issue: 4
  year: 2010
  end-page: 38
  article-title: A new investigation of the extended Krylov subspace method for matrix function evaluations
  publication-title: Numer Linear Algebra Appl
– year: 2002
– year: 2020
– volume: 146
  start-page: 203
  issue: 2
  year: 2002
  end-page: 24
  article-title: Numerical methods for the QCD overlap operator, I. sign‐function and error bounds
  publication-title: Comput Phys Commun
– volume: 27
  start-page: 445
  year: 2002
  end-page: 60
  article-title: Some classes of completely monotonic functions
  publication-title: Ann Acad Sci Fenn Math
– volume: 388
  start-page: 764
  issue: 5
  year: 2009
  end-page: 74
  article-title: Communicability betweeness in complex networks
  publication-title: Phys A Stat Mech Appl
– volume: 34
  start-page: 1911
  issue: 5
  year: 1997
  end-page: 25
  article-title: On Krylov subspace approximations to the matrix exponential operator
  publication-title: SIAM J Numer Anal
– volume: 39
  start-page: 539
  issue: 1
  year: 2018
  end-page: 65
  article-title: Low‐rank updates of matrix functions
  publication-title: SIAM J Matrix Anal Appl
– ident: e_1_2_11_17_1
  doi: 10.1137/110847007
– ident: e_1_2_11_27_1
  doi: 10.1137/1.9780898718003
– ident: e_1_2_11_40_1
  doi: 10.1007/978-1-4613-9353-5_10
– ident: e_1_2_11_36_1
  doi: 10.1002/gamm.201310002
– ident: e_1_2_11_60_1
  doi: 10.1016/j.fusengdes.2017.08.022
– ident: e_1_2_11_55_1
– ident: e_1_2_11_38_1
  doi: 10.1002/nla.652
– ident: e_1_2_11_23_1
  doi: 10.6028/jres.045.026
– ident: e_1_2_11_43_1
  doi: 10.1137/19M1245505
– ident: e_1_2_11_10_1
  doi: 10.1137/20M1331718
– volume: 29
  start-page: 1
  year: 2007
  ident: e_1_2_11_54_1
  article-title: Evaluating matrix functions for exponential integrators via Carathéodory–Fejér approximation and contour integrals
  publication-title: Electron Trans Numer Anal
– ident: e_1_2_11_21_1
  doi: 10.1137/S1064827596313310
– ident: e_1_2_11_4_1
  doi: 10.1017/S0962492910000048
– ident: e_1_2_11_18_1
  doi: 10.1016/j.cpc.2007.07.012
– ident: e_1_2_11_6_1
  doi: 10.1080/00207160.2013.765560
– ident: e_1_2_11_12_1
  doi: 10.1016/j.physa.2008.11.011
– ident: e_1_2_11_39_1
  doi: 10.1016/0024-3795(84)90221-0
– ident: e_1_2_11_5_1
  doi: 10.1137/S1064827595295337
– ident: e_1_2_11_61_1
  doi: 10.1016/j.pnucene.2018.04.020
– ident: e_1_2_11_49_1
  doi: 10.1137/140973463
– ident: e_1_2_11_50_1
  doi: 10.1137/070699378
– ident: e_1_2_11_25_1
  doi: 10.1137/17M1140108
– ident: e_1_2_11_28_1
  doi: 10.1137/0914009
– ident: e_1_2_11_57_1
  doi: 10.1137/15M1053645
– ident: e_1_2_11_42_1
  doi: 10.1016/j.laa.2010.08.042
– ident: e_1_2_11_29_1
  doi: 10.2307/2007796
– ident: e_1_2_11_48_1
  doi: 10.6028/jres.049.044
– ident: e_1_2_11_22_1
  doi: 10.1023/A:1026000105893
– ident: e_1_2_11_13_1
  doi: 10.1007/978-3-030-04088-8_6
– ident: e_1_2_11_58_1
– volume: 47
  start-page: 100
  year: 2017
  ident: e_1_2_11_30_1
  article-title: Block Krylov subspace methods for functions of matrices
  publication-title: Electron Trans Numer Anal
– ident: e_1_2_11_3_1
  doi: 10.1137/S0036142995280572
– ident: e_1_2_11_8_1
  doi: 10.1137/S0895479895283409
– ident: e_1_2_11_59_1
  doi: 10.1016/j.fusengdes.2018.02.092
– ident: e_1_2_11_16_1
  doi: 10.1007/978-3-030-04088-8_10
– ident: e_1_2_11_9_1
  doi: 10.1137/1.9780898717778
– ident: e_1_2_11_19_1
  doi: 10.1016/S0010-4655(02)00455-1
– ident: e_1_2_11_52_1
  doi: 10.1007/s00211-011-0366-3
– ident: e_1_2_11_20_1
  doi: 10.21914/anziamj.v45i0.904
– ident: e_1_2_11_53_1
  doi: 10.1137/0729014
– volume: 39
  start-page: 379
  year: 2012
  ident: e_1_2_11_7_1
  article-title: A survey and comparison of contemporary algorithms for computing the matrix geometric mean
  publication-title: Electron Trans Numer Anal
– volume: 27
  start-page: 445
  year: 2002
  ident: e_1_2_11_51_1
  article-title: Some classes of completely monotonic functions
  publication-title: Ann Acad Sci Fenn Math
– ident: e_1_2_11_44_1
  doi: 10.1007/s11075-016-0239-z
– ident: e_1_2_11_46_1
  doi: 10.1137/080741744
– ident: e_1_2_11_14_1
  doi: 10.1109/TSIPN.2017.2731164
– ident: e_1_2_11_41_1
  doi: 10.1137/06066120X
– ident: e_1_2_11_45_1
– ident: e_1_2_11_47_1
  doi: 10.1515/9780691213101
– ident: e_1_2_11_24_1
  doi: 10.1137/130912839
– ident: e_1_2_11_26_1
– ident: e_1_2_11_31_1
– ident: e_1_2_11_32_1
  doi: 10.1090/S0025-5718-1979-0521282-9
– ident: e_1_2_11_33_1
  doi: 10.1137/040608088
– ident: e_1_2_11_35_1
  doi: 10.1137/S0895479895292400
– ident: e_1_2_11_2_1
  doi: 10.1137/090761070
– ident: e_1_2_11_34_1
– ident: e_1_2_11_56_1
  doi: 10.1137/100788860
– ident: e_1_2_11_15_1
  doi: 10.1137/16M1077969
– ident: e_1_2_11_37_1
  doi: 10.1007/s10543-013-0420-x
– ident: e_1_2_11_11_1
  doi: 10.13182/NSE15-23
SSID ssj0006593
Score 2.3846312
Snippet The Fréchet derivative Lf(A,E) of the matrix function f(A) plays an important role in many different applications, including condition number estimation and...
The Fréchet derivative of the matrix function plays an important role in many different applications, including condition number estimation and network...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Approximation
Computation
Fréchet derivative
Krylov subspace
matrix exponential
matrix function
Network analysis
Stieltjes function
Subspace methods
Title Computing low‐rank approximations of the Fréchet derivative of a matrix function using Krylov subspace methods
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnla.2401
https://www.proquest.com/docview/2590893263
Volume 28
WOSCitedRecordID wos000661288800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006593
  issn: 1070-5325
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NSsNAEMcXsR704LdYrbKC6CmabDbN7lHUIliLiIq3sJ8i1FabWj36CL6Gz-Gb-CTubNKqoCB4yiE7EDK7OzPJ7O-P0CahNrapoIFimgfUGhlwnrBASUkp1TKkXiXispm2Wuzqip-WXZVwFqbgQ4w-uMHK8Ps1LHAh890v0NC22HHhyFU-lSiKU2jnIvR0tAvXC-Cuq27CIIlJMgTPhmR3aPk9FH3ml1-zVB9mGjP_ecBZNF0ml3ivmA1zaMx05tHUyYjMmi-g-0LGwQUs3O4-vj-_gGg79mTxp5viGGOOuxY7E9zovb06n_axdtN04AnhcEvgW-D6P2GIiWCAoXn-Gh_3XPE_wLnbilwhbnAhTp0voovG4fn-UVDKLgQqTngU6LhOpWCGSEUN0RG3TNaVC_NSqciEImSCKW20IlynLFKSaWFNzGOjdQiY0SU03ul2zDLCxqaJNYy7EpxRorjUmlFtnaES8PO4iraHHshUySQHaYx2VtCUiWdew0usoo3RyLuCw_HDmNrQiVm5EvOMgKg7JKlxFW15d_1qn7Wae3Bd-evAVTRJoMXFd7fU0Hi_92DW0IQa9G_y3rqfj-uocnDWuGh-AA4E6dU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NThsxEMdHESABB6AURPgoroToaZuN15vY6ikqjUBZIoQI4rZafyGkkEA2pPTGI_AaPEffhCepZz8CSFSq1NMe1iNZO7Znxmv__gB7lNnANhPmKa6Fx6yRnhAh95SUjDEtfZapRJxHzW6XX1yIkwp8K-_C5HyI6YYbzoxsvcYJjhvStVfU0H7y1cUjV_rMIvXKVV6zB6ftXjRdiBs5c9cVOL4XBjQs2bM-rZW2b6PRS4r5OlHNIk17-b_6uAJLRYJJWvmI-AAVM1iFxeMpnTX9CLe5lIMLWqQ__Pn88IjC7SSji99f5VcZUzK0xJmQ9uj3k_PrmGg3VCcZJRxfJeQa2f73BOMiGhA8QH9JOqNf_eGEpG45csW4IblAdboGvfaPs--HXiG94KkgFHVPBw0mE26oVMxQXReWy4ZyoV4qVTd-4vOEK220okI3eV1JrhNrAhEYrX1Eja7DzGA4MBtAjG2G1nDhynDOqBJSa860dYYqwR_IVfhSuiBWBZcc5TH6cU5Uphn3Gj9iFT5PW97kLI532myXXoyL2ZjGFIXdMVENqrCf-euv9nE3auFz818b7sL84dlxFEdH3c4WLFA88pKddtmGmfHozuzAnJqMr9LRp2J4_gHJk-2z
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NTuMwEMdHCBCCA18LolDAK63glCV1nNYWpwqoWFGqHgBxi-IvhFRaaErhyCPwGjwHb8KT4HGaAhIrrbSnHOKRoszYM5PYvz_AL8psZGspCxTXImDWyECImAdKSsaYliHzKhEXzVqrxS8vRXsC9ouzMDkfYvzBDWeGX69xgptbbfc-UUM76W-Xj1zrM8WQ0o5YZ9YeL8PVnLjr2pswiCMaF-TZkO4Vll9z0UeB-blM9XmmsfBfT7gI86PyktTzeFiCCdNdhrnTMZs1-wF3uZCDS1mk03t4e3pG2Xbi2eKP1_lBxoz0LHEmpNF_fXFeHRDtAnXoGeF4KyU3SPZ_JJgV0YDg9vkrctJ37f-QZG4xcq24Ibk8dbYC542js4PjYCS8EKgoFpVAR1UmU26oVMxQXRGWy6pyiV4qVTFhGvKUK220okLXeEVJrlNrIhEZrUMEja7CZLfXNWtAjK3F1nDhmnDOqBJSa860dYYqxd_HJdgtXJCoEZUcxTE6Sc5Tpp56jS-xBD_HI29zEsc3Y8qFF5PRXMwSirLuWKZGJdjx_vqrfdJq1vG6_q8Dt2GmfdhImn9aJxswS3G_i9_qUobJQf_ebMK0Gg6us_6Wj813LLjrkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computing+low%E2%80%90rank+approximations+of+the+Fr%C3%A9chet+derivative+of+a+matrix+function+using+Krylov+subspace+methods&rft.jtitle=Numerical+linear+algebra+with+applications&rft.au=Kandolf%2C+Peter&rft.au=Koskela%2C+Antti&rft.au=Relton%2C+Samuel+D.&rft.au=Schweitzer%2C+Marcel&rft.date=2021-12-01&rft.issn=1070-5325&rft.eissn=1099-1506&rft.volume=28&rft.issue=6&rft_id=info:doi/10.1002%2Fnla.2401&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nla_2401
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-5325&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-5325&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-5325&client=summon