Computing low‐rank approximations of the Fréchet derivative of a matrix function using Krylov subspace methods
The Fréchet derivative Lf(A,E) of the matrix function f(A) plays an important role in many different applications, including condition number estimation and network analysis. We present several different Krylov subspace methods for computing low‐rank approximations of Lf(A,E) when the direction term...
Uložené v:
| Vydané v: | Numerical linear algebra with applications Ročník 28; číslo 6 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Wiley Subscription Services, Inc
01.12.2021
|
| Predmet: | |
| ISSN: | 1070-5325, 1099-1506 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The Fréchet derivative Lf(A,E) of the matrix function f(A) plays an important role in many different applications, including condition number estimation and network analysis. We present several different Krylov subspace methods for computing low‐rank approximations of Lf(A,E) when the direction term E is of rank one (which can easily be extended to general low rank). We analyze the convergence of the resulting methods both in the Hermitian and non‐Hermitian case. In a number of numerical tests, both including matrices from benchmark collections and from real‐world applications, we demonstrate and compare the accuracy and efficiency of the proposed methods. |
|---|---|
| Bibliografia: | Funding information Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, 156215 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1070-5325 1099-1506 |
| DOI: | 10.1002/nla.2401 |