Numerical analysis of nonlinear fractional Klein–Fock–Gordon equation arising in quantum field theory via Caputo–Fabrizio fractional operator

The present article deals with the solution of nonlinear fractional Klein–Fock–Gordon equation which involved the newly developed Caputo–Fabrizio fractional derivative with non-singular kernel. We adopt fractional homotopy perturbation transform method in order to find the approximate solution of fr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical sciences (Karaj, Iran) Ročník 15; číslo 3; s. 269 - 281
Hlavní autoři: Prakash, Amit, Kumar, Ajay, Baskonus, Haci Mehmet, Kumar, Ashok
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2021
Springer Nature B.V
Témata:
ISSN:2008-1359, 2251-7456
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The present article deals with the solution of nonlinear fractional Klein–Fock–Gordon equation which involved the newly developed Caputo–Fabrizio fractional derivative with non-singular kernel. We adopt fractional homotopy perturbation transform method in order to find the approximate solution of fractional Klein–Fock–Gordon equation in the form of rapidly convergent series. Existence and uniqueness analysis of the considered model is provided. We consider few numerical examples to validate the projected technique. The obtained results shows that this method is very efficient, simple in implementation and that it can be applied to solve other nonlinear problems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2008-1359
2251-7456
DOI:10.1007/s40096-020-00365-2