Two-step inertial Bregman alternating minimization algorithm for nonconvex and nonsmooth problems
In this paper, we propose an algorithm combining Bregman alternating minimization algorithm with two-step inertial force for solving a minimization problem composed of two nonsmooth functions with a smooth one in the absence of convexity. For solving nonconvex and nonsmooth problems, we give an abst...
Saved in:
| Published in: | Journal of global optimization Vol. 84; no. 4; pp. 941 - 966 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.12.2022
Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 0925-5001, 1573-2916 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we propose an algorithm combining Bregman alternating minimization algorithm with two-step inertial force for solving a minimization problem composed of two nonsmooth functions with a smooth one in the absence of convexity. For solving nonconvex and nonsmooth problems, we give an abstract convergence theorem for general descent methods satisfying a sufficient decrease assumption, and allowing a relative error tolerance. Our result holds under the assumption that the objective function satisfies the Kurdyka–Łojasiewicz inequality. The proposed algorithm is shown to satisfy the requirements of our abstract convergence theorem. The convergence is obtained provided an appropriate regularization of the objective function satisfies the Kurdyka–Łojasiewicz inequality. Finally, numerical results are reported to show the effectiveness of the proposed algorithm. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0925-5001 1573-2916 |
| DOI: | 10.1007/s10898-022-01176-6 |