An accelerated continuous greedy algorithm for maximizing strong submodular functions

An accelerated continuous greedy algorithm is proposed for maximization of a special class of non-decreasing submodular functions f : 2 X → R + subject to a matroid constraint with a 1 c ( 1 - e - c - ε ) approximation for any ε > 0 , where c is the curvature with respect to the optimum. Function...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of combinatorial optimization Ročník 30; číslo 4; s. 1107 - 1124
Hlavní autori: Wang, Zengfu, Moran, Bill, Wang, Xuezhi, Pan, Quan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.11.2015
Predmet:
ISSN:1382-6905, 1573-2886
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:An accelerated continuous greedy algorithm is proposed for maximization of a special class of non-decreasing submodular functions f : 2 X → R + subject to a matroid constraint with a 1 c ( 1 - e - c - ε ) approximation for any ε > 0 , where c is the curvature with respect to the optimum. Functions in the special class of submodular functions satisfy the criterion ∀ A , B ⊆ X , ∀ j ∈ X \ ( A ∪ B ) , ▵ f j ( A , B ) = Δ f ( A ∪ { j } ) + f ( B ∪ { j } ) - f ( ( A ∩ B ) ∪ { j } ) - f ( A ∪ B ∪ { j } ) - [ f ( A ) + f ( B ) - f ( A ∩ B ) - f ( A ∪ B ) ] ≤ 0 . As an alternative to the standard continuous greedy algorithm, the proposed algorithm can substantially reduce the computational expense by removing redundant computational steps and, therefore, is able to efficiently handle the maximization problems for this special class of submodular functions. Examples of such functions are presented.
ISSN:1382-6905
1573-2886
DOI:10.1007/s10878-013-9685-x