Intrinsic Ultracontractivity for Domains in Negatively Curved Manifolds

Let M be a complete, non-compact, connected Riemannian manifold with Ricci curvature bounded from below by a negative constant. A sufficient condition is obtained for open and connected sets D in M for which the corresponding Dirichlet heat semigroup is intrinsically ultracontractive. That condition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational methods and function theory Jg. 21; H. 4; S. 797 - 824
Hauptverfasser: Aikawa, Hiroaki, van den Berg, Michiel, Masamune, Jun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2021
Springer Nature B.V
Schlagworte:
ISSN:1617-9447, 2195-3724
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let M be a complete, non-compact, connected Riemannian manifold with Ricci curvature bounded from below by a negative constant. A sufficient condition is obtained for open and connected sets D in M for which the corresponding Dirichlet heat semigroup is intrinsically ultracontractive. That condition is formulated in terms of capacitary width. It is shown that both the reciprocal of the bottom of the spectrum of the Dirichlet Laplacian acting in L 2 ( D ) , and the supremum of the torsion function for D are comparable with the square of the capacitary width for D if the latter is sufficiently small. The technical key ingredients are the volume doubling property, the Poincaré inequality and the Li-Yau Gaussian estimate for the Dirichlet heat kernel at finite scale.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1617-9447
2195-3724
DOI:10.1007/s40315-021-00402-8