Intrinsic Ultracontractivity for Domains in Negatively Curved Manifolds

Let M be a complete, non-compact, connected Riemannian manifold with Ricci curvature bounded from below by a negative constant. A sufficient condition is obtained for open and connected sets D in M for which the corresponding Dirichlet heat semigroup is intrinsically ultracontractive. That condition...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational methods and function theory Ročník 21; číslo 4; s. 797 - 824
Hlavní autoři: Aikawa, Hiroaki, van den Berg, Michiel, Masamune, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2021
Springer Nature B.V
Témata:
ISSN:1617-9447, 2195-3724
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let M be a complete, non-compact, connected Riemannian manifold with Ricci curvature bounded from below by a negative constant. A sufficient condition is obtained for open and connected sets D in M for which the corresponding Dirichlet heat semigroup is intrinsically ultracontractive. That condition is formulated in terms of capacitary width. It is shown that both the reciprocal of the bottom of the spectrum of the Dirichlet Laplacian acting in L 2 ( D ) , and the supremum of the torsion function for D are comparable with the square of the capacitary width for D if the latter is sufficiently small. The technical key ingredients are the volume doubling property, the Poincaré inequality and the Li-Yau Gaussian estimate for the Dirichlet heat kernel at finite scale.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1617-9447
2195-3724
DOI:10.1007/s40315-021-00402-8