Intrinsic Ultracontractivity for Domains in Negatively Curved Manifolds
Let M be a complete, non-compact, connected Riemannian manifold with Ricci curvature bounded from below by a negative constant. A sufficient condition is obtained for open and connected sets D in M for which the corresponding Dirichlet heat semigroup is intrinsically ultracontractive. That condition...
Uloženo v:
| Vydáno v: | Computational methods and function theory Ročník 21; číslo 4; s. 797 - 824 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 1617-9447, 2195-3724 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Let
M
be a complete, non-compact, connected Riemannian manifold with Ricci curvature bounded from below by a negative constant. A sufficient condition is obtained for open and connected sets
D
in
M
for which the corresponding Dirichlet heat semigroup is intrinsically ultracontractive. That condition is formulated in terms of capacitary width. It is shown that both the reciprocal of the bottom of the spectrum of the Dirichlet Laplacian acting in
L
2
(
D
)
, and the supremum of the torsion function for
D
are comparable with the square of the capacitary width for
D
if the latter is sufficiently small. The technical key ingredients are the volume doubling property, the Poincaré inequality and the Li-Yau Gaussian estimate for the Dirichlet heat kernel at finite scale. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1617-9447 2195-3724 |
| DOI: | 10.1007/s40315-021-00402-8 |