Weak Greedy Algorithms and the Equivalence Between Semi-greedy and Almost Greedy Markushevich Bases

We introduce and study the notion of weak semi-greedy systems—which is inspired in the concepts of semi-greedy and branch semi-greedy systems and weak thresholding sets-, and prove that in infinite dimensional Banach spaces, the notions of semi-greedy, branch semi-greedy, weak semi-greedy, and almos...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of fourier analysis and applications Ročník 29; číslo 2
Hlavní autoři: Berasategui, Miguel, Lassalle, Silvia
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2023
Springer
Springer Nature B.V
Témata:
ISSN:1069-5869, 1531-5851
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We introduce and study the notion of weak semi-greedy systems—which is inspired in the concepts of semi-greedy and branch semi-greedy systems and weak thresholding sets-, and prove that in infinite dimensional Banach spaces, the notions of semi-greedy, branch semi-greedy, weak semi-greedy, and almost greedy Markushevich bases are all equivalent. This completes and extends some results from (Berná in J Math Anal Appl 470:218–225, 2019; Dilworth et al. in Studia Math 159:67–101, 2003; J Funct Anal 263:3900–3921, 2012). We also exhibit an example of a semi-greedy system that is neither almost greedy nor a Markushevich basis, showing that the Markushevich condition cannot be dropped from the equivalence result. In some cases, we obtain improved upper bounds for the corresponding constants of the systems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1069-5869
1531-5851
DOI:10.1007/s00041-023-09997-z