Weak Greedy Algorithms and the Equivalence Between Semi-greedy and Almost Greedy Markushevich Bases
We introduce and study the notion of weak semi-greedy systems—which is inspired in the concepts of semi-greedy and branch semi-greedy systems and weak thresholding sets-, and prove that in infinite dimensional Banach spaces, the notions of semi-greedy, branch semi-greedy, weak semi-greedy, and almos...
Uloženo v:
| Vydáno v: | The Journal of fourier analysis and applications Ročník 29; číslo 2 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.04.2023
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 1069-5869, 1531-5851 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We introduce and study the notion of weak semi-greedy systems—which is inspired in the concepts of semi-greedy and branch semi-greedy systems and weak thresholding sets-, and prove that in infinite dimensional Banach spaces, the notions of
semi-greedy, branch semi-greedy, weak semi-greedy, and almost greedy
Markushevich bases are all equivalent. This completes and extends some results from (Berná in J Math Anal Appl 470:218–225, 2019; Dilworth et al. in Studia Math 159:67–101, 2003; J Funct Anal 263:3900–3921, 2012). We also exhibit an example of a semi-greedy system that is neither almost greedy nor a Markushevich basis, showing that the Markushevich condition cannot be dropped from the equivalence result. In some cases, we obtain improved upper bounds for the corresponding constants of the systems. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1069-5869 1531-5851 |
| DOI: | 10.1007/s00041-023-09997-z |