Multi-Objective Design of a Lunar GNSS

The success of future lunar missions depends on quality positioning, navigation, and timing (PNT) information. Earthbound GNSS signals can be received at lunar distances but suffer from poor geometric dilution of precision (GDOP) and provide no coverage of the lunar far side. This article explores t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Navigation (Washington) Jg. 69; H. 1; S. navi.504
Hauptverfasser: Pereira, Filipe, Reed, Patrick M., Selva, Daniel
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Manassas The Institute of Navigation 01.03.2022
Institute of Navigation
Schlagworte:
ISSN:0028-1522, 2161-4296
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The success of future lunar missions depends on quality positioning, navigation, and timing (PNT) information. Earthbound GNSS signals can be received at lunar distances but suffer from poor geometric dilution of precision (GDOP) and provide no coverage of the lunar far side. This article explores the design space of a dedicated GNSS system in lunar orbit by using a multi-objective evolutionary algorithm framework to optimize GDOP, availability, space segment cost, station-keeping ΔV, and robustness to single-satellite failure. Results show that Pareto approximate solutions that achieve a global GDOP availability (GDOP ≤ 6.0) greater than 98% contain a minimum of 24 satellites in near-circular polar orbits at an altitude of ~2 lunar radii. The impact of single-satellite failure on GDOP outage is analyzed and a no-maneuver scenario is considered. Design rules characterizing optimal solutions are identified and trade-offs between station-keeping maneuver frequency, performance, and design lifetime are discussed.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0028-1522
2161-4296
DOI:10.33012/navi.504