A Novel Real-coded Quantum-inspired Genetic Algorithm and Its Application in Data Reconciliation

Traditional quantum-inspired genetic algorithm (QGA) has drawbacks such as premature convergence, heavy computational cost, complicated coding and decoding process etc. In this paper, a novel real-coded quantum-inspired genetic algorithm is proposed based on interval division thinking. Detailed comp...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of computational intelligence systems Ročník 5; číslo 3; s. 413 - 420
Hlavní autori: Lin, G.A.O., Xingsheng, G.U.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.06.2012
Springer
Predmet:
ISSN:1875-6891, 1875-6883, 1875-6883
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Traditional quantum-inspired genetic algorithm (QGA) has drawbacks such as premature convergence, heavy computational cost, complicated coding and decoding process etc. In this paper, a novel real-coded quantum-inspired genetic algorithm is proposed based on interval division thinking. Detailed comparisons with some similar approaches for some standard benchmark functions test validity of the proposed algorithm. Besides, the proposed algorithm is used in two typical nonlinear data reconciliation problems (distilling process and extraction process) and simulation results show its efficiency in nonlinear data reconciliation problems.
ISSN:1875-6891
1875-6883
1875-6883
DOI:10.1080/18756891.2012.696893